3 resultados para Optimal control extensions
em Massachusetts Institute of Technology
Resumo:
In this paper we present some extensions to the k-means algorithm for vector quantization that permit its efficient use in image segmentation and pattern classification tasks. It is shown that by introducing state variables that correspond to certain statistics of the dynamic behavior of the algorithm, it is possible to find the representative centers fo the lower dimensional maniforlds that define the boundaries between classes, for clouds of multi-dimensional, mult-class data; this permits one, for example, to find class boundaries directly from sparse data (e.g., in image segmentation tasks) or to efficiently place centers for pattern classification (e.g., with local Gaussian classifiers). The same state variables can be used to define algorithms for determining adaptively the optimal number of centers for clouds of data with space-varying density. Some examples of the applicatin of these extensions are also given.
Resumo:
We analyze a finite horizon, single product, periodic review model in which pricing and production/inventory decisions are made simultaneously. Demands in different periods are random variables that are independent of each other and their distributions depend on the product price. Pricing and ordering decisions are made at the beginning of each period and all shortages are backlogged. Ordering cost includes both a fixed cost and a variable cost proportional to the amount ordered. The objective is to find an inventory policy and a pricing strategy maximizing expected profit over the finite horizon. We show that when the demand model is additive, the profit-to-go functions are k-concave and hence an (s,S,p) policy is optimal. In such a policy, the period inventory is managed based on the classical (s,S) policy and price is determined based on the inventory position at the beginning of each period. For more general demand functions, i.e., multiplicative plus additive functions, we demonstrate that the profit-to-go function is not necessarily k-concave and an (s,S,p) policy is not necessarily optimal. We introduce a new concept, the symmetric k-concave functions and apply it to provide a characterization of the optimal policy.
Resumo:
We analyze an infinite horizon, single product, periodic review model in which pricing and production/inventory decisions are made simultaneously. Demands in different periods are identically distributed random variables that are independent of each other and their distributions depend on the product price. Pricing and ordering decisions are made at the beginning of each period and all shortages are backlogged. Ordering cost includes both a fixed cost and a variable cost proportional to the amount ordered. The objective is to maximize expected discounted, or expected average profit over the infinite planning horizon. We show that a stationary (s,S,p) policy is optimal for both the discounted and average profit models with general demand functions. In such a policy, the period inventory is managed based on the classical (s,S) policy and price is determined based on the inventory position at the beginning of each period.