3 resultados para Online cooperation
em Massachusetts Institute of Technology
Resumo:
This report addresses the problem of achieving cooperation within small- to medium- sized teams of heterogeneous mobile robots. I describe a software architecture I have developed, called ALLIANCE, that facilitates robust, fault tolerant, reliable, and adaptive cooperative control. In addition, an extended version of ALLIANCE, called L-ALLIANCE, is described, which incorporates a dynamic parameter update mechanism that allows teams of mobile robots to improve the efficiency of their mission performance through learning. A number of experimental results of implementing these architectures on both physical and simulated mobile robot teams are described. In addition, this report presents the results of studies of a number of issues in mobile robot cooperation, including fault tolerant cooperative control, adaptive action selection, distributed control, robot awareness of team member actions, improving efficiency through learning, inter-robot communication, action recognition, and local versus global control.
Resumo:
We consider an online learning scenario in which the learner can make predictions on the basis of a fixed set of experts. The performance of each expert may change over time in a manner unknown to the learner. We formulate a class of universal learning algorithms for this problem by expressing them as simple Bayesian algorithms operating on models analogous to Hidden Markov Models (HMMs). We derive a new performance bound for such algorithms which is considerably simpler than existing bounds. The bound provides the basis for learning the rate at which the identity of the optimal expert switches over time. We find an analytic expression for the a priori resolution at which we need to learn the rate parameter. We extend our scalar switching-rate result to models of the switching-rate that are governed by a matrix of parameters, i.e. arbitrary homogeneous HMMs. We apply and examine our algorithm in the context of the problem of energy management in wireless networks. We analyze the new results in the framework of Information Theory.
Resumo:
Increasingly used in online auctions, buyout prices allow bidders to instantly purchase the item listed. We distinguish two types: a temporary buyout option disappears if a bid above the reserve price is made; a permanent one remains throughout the auction or until it is exercised. In a model featuring time-sensitive bidders with uniform valuations and Poisson arrivals but endogenous bidding times, we focus on finding temporary and permanent buyout prices maximizing the seller's discounted revenue, and examine the relative benefit of using each type of option in various environments. We characterize equilibrium bidder strategies in both cases and then solve the problem of maximizing seller's utility by simulation. Our numerical experiments suggest that buyout options may significantly increase a seller’s revenue. Additionally, while a temporary buyout option promotes early bidding, a permanent option gives an incentive to the bidders to bid late, thus leading to concentrated bids near the end of the auction.