3 resultados para ORDERED MESOPHASE STRUCTURES

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free-word order languages have long posed significant problems for standard parsing algorithms. This thesis presents an implemented parser, based on Government-Binding (GB) theory, for a particular free-word order language, Warlpiri, an aboriginal language of central Australia. The words in a sentence of a free-word order language may swap about relatively freely with little effect on meaning: the permutations of a sentence mean essentially the same thing. It is assumed that this similarity in meaning is directly reflected in the syntax. The parser presented here properly processes free word order because it assigns the same syntactic structure to the permutations of a single sentence. The parser also handles fixed word order, as well as other phenomena. On the view presented here, there is no such thing as a "configurational" or "non-configurational" language. Rather, there is a spectrum of languages that are more or less ordered. The operation of this parsing system is quite different in character from that of more traditional rule-based parsing systems, e.g., context-free parsers. In this system, parsing is carried out via the construction of two different structures, one encoding precedence information and one encoding hierarchical information. This bipartite representation is the key to handling both free- and fixed-order phenomena. This thesis first presents an overview of the portion of Warlpiri that can be parsed. Following this is a description of the linguistic theory on which the parser is based. The chapter after that describes the representations and algorithms of the parser. In conclusion, the parser is compared to related work. The appendix contains a substantial list of test cases ??th grammatical and ungrammatical ??at the parser has actually processed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a statistical framework for object recognition. The framework is motivated by the pictorial structure models introduced by Fischler and Elschlager nearly 30 years ago. The basic idea is to model an object by a collection of parts arranged in a deformable configuration. The appearance of each part is modeled separately, and the deformable configuration is represented by spring-like connections between pairs of parts. These models allow for qualitative descriptions of visual appearance, and are suitable for generic recognition problems. The problem of detecting an object in an image and the problem of learning an object model using training examples are naturally formulated under a statistical approach. We present efficient algorithms to solve these problems in our framework. We demonstrate our techniques by training models to represent faces and human bodies. The models are then used to locate the corresponding objects in novel images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the differences --- conceptually and algorithmically --- between affine and projective frameworks for the tasks of visual recognition and reconstruction from perspective views. It is shown that an affine invariant exists between any view and a fixed view chosen as a reference view. This implies that for tasks for which a reference view can be chosen, such as in alignment schemes for visual recognition, projective invariants are not really necessary. We then use the affine invariant to derive new algebraic connections between perspective views. It is shown that three perspective views of an object are connected by certain algebraic functions of image coordinates alone (no structure or camera geometry needs to be involved).