1 resultado para OPTION
em Massachusetts Institute of Technology
Filtro por publicador
- JISC Information Environment Repository (1)
- Repository Napier (1)
- Aberystwyth University Repository - Reino Unido (3)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (27)
- Archive of European Integration (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (70)
- Aston University Research Archive (8)
- B-Digital - Universidade Fernando Pessoa - Portugal (11)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- Biblioteca Digital de la Universidad Católica Argentina (8)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (47)
- Blue Tiger Commons - Lincoln University - USA (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (33)
- Boston University Digital Common (15)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (25)
- CentAUR: Central Archive University of Reading - UK (10)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (11)
- Cochin University of Science & Technology (CUSAT), India (3)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (11)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (5)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (3)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (23)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (50)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (57)
- Indian Institute of Science - Bangalore - Índia (91)
- Infoteca EMBRAPA (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (1)
- Publishing Network for Geoscientific & Environmental Data (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (12)
- Queensland University of Technology - ePrints Archive (316)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade Federal de São Paulo - UNIFESP (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (13)
- Repositorio Institucional Universidad de Medellín (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- School of Medicine, Washington University, United States (1)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (9)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Montréal, Canada (5)
- University of Connecticut - USA (1)
- University of Michigan (11)
- University of Queensland eSpace - Australia (13)
- University of Southampton, United Kingdom (1)
- University of Washington (2)
Resumo:
Nonlinear multivariate statistical techniques on fast computers offer the potential to capture more of the dynamics of the high dimensional, noisy systems underlying financial markets than traditional models, while making fewer restrictive assumptions. This thesis presents a collection of practical techniques to address important estimation and confidence issues for Radial Basis Function networks arising from such a data driven approach, including efficient methods for parameter estimation and pruning, a pointwise prediction error estimator, and a methodology for controlling the "data mining'' problem. Novel applications in the finance area are described, including customized, adaptive option pricing and stock price prediction.