2 resultados para Non-gravitational force
em Massachusetts Institute of Technology
Resumo:
This thesis addresses the problem of synthesizing grasps that are force-closure and stable. The synthesis of force-closure grasps constructs independent regions of contact for the fingertips, such that the motion of the grasped object is totally constrained. The synthesis of stable grasps constructs virtual springs at the contacts, such that the grasped object is stable, and has a desired stiffness matrix about its stable equilibrium. A grasp on an object is force-closure if and only if we can exert, through the set of contacts, arbitrary forces and moments on the object. So force-closure implies equilibrium exists because zero forces and moment is spanned. In the reverse direction, we prove that a non-marginal equilibrium grasp is also a force-closure grasp, if it has at least two point contacts with friction in 2D, or two soft-finger contacts or three hard-finger contacts in 3D. Next, we prove that all force-closure grasps can be made stable, by using either active or passive springs at the contacts. The thesis develops a simple relation between the stability and stiffness of the grasp and the spatial configuration of the virtual springs at the contacts. The stiffness of the grasp depends also on whether the points of contact stick, or slide without friction on straight or curved surfaces of the object. The thesis presents fast and simple algorithms for directly constructing stable fore-closure grasps based on the shape of the grasped object. The formal framework of force-closure and stable grasps provides a partial explanation to why we stably grasp objects to easily, and to why our fingers are better soft than hard.
Resumo:
This work presents detailed numerical calculations of the dielectrophoretic force in octupolar traps designed for single-cell trapping. A trap with eight planar electrodes is studied for spherical and ellipsoidal particles using an indirect implementation of the boundary element method (BEM). Multipolar approximations of orders one to three are compared with the full Maxwell stress tensor (MST) calculation of the electrical force on spherical particles. Ellipsoidal particles are also studied, but in their case only the dipolar approximation is available for comparison with the MST solution. The results show that the full MST calculation is only required in the study of non-spherical particles.