2 resultados para Newton filtration
em Massachusetts Institute of Technology
Resumo:
This paper addresses the problem of nonlinear multivariate root finding. In an earlier paper we described a system called Newton which finds roots of systems of nonlinear equations using refinements of interval methods. The refinements are inspired by AI constraint propagation techniques. Newton is competative with continuation methods on most benchmarks and can handle a variety of cases that are infeasible for continuation methods. This paper presents three "cuts" which we believe capture the essential theoretical ideas behind the success of Newton. This paper describes the cuts in a concise and abstract manner which, we believe, makes the theoretical content of our work more apparent. Any implementation will need to adopt some heuristic control mechanism. Heuristic control of the cuts is only briefly discussed here.
Resumo:
The MOS transistor physical model as described in [3] is presented here as a network model. The goal is to obtain an accurate model, suitable for simulation, free from certain problems reported in the literature [13], and conceptually as simple as possible. To achieve this goal the original model had to be extended and modified. The paper presents the derivation of the network model from physical equations, including the corrections which are required for simulation and which compensate for simplifications introduced in the original physical model. Our intrinsic MOS model consists of three nonlinear voltage-controlled capacitors and a dependent current source. The charges of the capacitors and the current of the current source are functions of the voltages $V_{gs}$, $V_{bs}$, and $V_{ds}$. The complete model consists of the intrinsic model plus the parasitics. The apparent simplicity of the model is a result of hiding information in the characteristics of the nonlinear components. The resulted network model has been checked by simulation and analysis. It is shown that the network model is suitable for simulation: It is defined for any value of the voltages; the functions involved are continuous and satisfy Lipschitz conditions with no jumps at region boundaries; Derivatives have been computed symbolically and are available for use by the Newton-Raphson method. The model"s functions can be measured from the terminals. It is also shown that small channel effects can be included in the model. Higher frequency effects can be modeled by using a network consisting of several sections of the basic lumped model. Future plans include a detailed comparison of the network model with models such as SPICE level 3 and a comparison of the multi- section higher frequency model with experiments.