2 resultados para Neural stimulation.
em Massachusetts Institute of Technology
Resumo:
We consider the question "How should one act when the only goal is to learn as much as possible?" Building on the theoretical results of Fedorov [1972] and MacKay [1992], we apply techniques from Optimal Experiment Design (OED) to guide the query/action selection of a neural network learner. We demonstrate that these techniques allow the learner to minimize its generalization error by exploring its domain efficiently and completely. We conclude that, while not a panacea, OED-based query/action has much to offer, especially in domains where its high computational costs can be tolerated.
Resumo:
Most computational models of neurons assume that their electrical characteristics are of paramount importance. However, all long-term changes in synaptic efficacy, as well as many short-term effects, are mediated by chemical mechanisms. This technical report explores the interaction between electrical and chemical mechanisms in neural learning and development. Two neural systems that exemplify this interaction are described and modelled. The first is the mechanisms underlying habituation, sensitization, and associative learning in the gill withdrawal reflex circuit in Aplysia, a marine snail. The second is the formation of retinotopic projections in the early visual pathway during embryonic development.