5 resultados para NUMERICAL SIMULATION
em Massachusetts Institute of Technology
Resumo:
Electroosmotic flow is a convenient mechanism for transporting polar fluid in a microfluidic device. The flow is generated through the application of an external electric field that acts on the free charges that exists in a thin Debye layer at the channel walls. The charge on the wall is due to the chemistry of the solid-fluid interface, and it can vary along the channel, e.g. due to modification of the wall. This investigation focuses on the simulation of the electroosmotic flow (EOF) profile in a cylindrical microchannel with step change in zeta potential. The modified Navier-Stoke equation governing the velocity field and a non-linear two-dimensional Poisson-Boltzmann equation governing the electrical double-layer (EDL) field distribution are solved numerically using finite control-volume method. Continuities of flow rate and electric current are enforced resulting in a non-uniform electrical field and pressure gradient distribution along the channel. The resulting parabolic velocity distribution at the junction of the step change in zeta potential, which is more typical of a pressure-driven velocity flow profile, is obtained.
Resumo:
The Kineticist's Workbench is a program that simulates chemical reaction mechanisms by predicting, generating, and interpreting numerical data. Prior to simulation, it analyzes a given mechanism to predict that mechanism's behavior; it then simulates the mechanism numerically; and afterward, it interprets and summarizes the data it has generated. In performing these tasks, the Workbench uses a variety of techniques: graph- theoretic algorithms (for analyzing mechanisms), traditional numerical simulation methods, and algorithms that examine simulation results and reinterpret them in qualitative terms. The Workbench thus serves as a prototype for a new class of scientific computational tools---tools that provide symbiotic collaborations between qualitative and quantitative methods.
Resumo:
The discontinuities in the solutions of systems of conservation laws are widely considered as one of the difficulties in numerical simulation. A numerical method is proposed for solving these partial differential equations with discontinuities in the solution. The method is able to track these sharp discontinuities or interfaces while still fully maintain the conservation property. The motion of the front is obtained by solving a Riemann problem based on the state values at its both sides which are reconstructed by using weighted essentially non oscillatory (WENO) scheme. The propagation of the front is coupled with the evaluation of "dynamic" numerical fluxes. Some numerical tests in 1D and preliminary results in 2D are presented.
Resumo:
The convective-diffusive transport of sub-micron aerosols in an oscillatory laminar flow within a 2-D single bifurcation is studied, using order-of-magnitude analysis and numerical simulation using a commercial software (FEMLAB®). Based on the similarity between momentum and mass transfer equations, various transient mass transport regimes are classified and scaled according to Strouhal and beta numbers. Results show that the mass transfer rate is highest at the carinal ridge and there is a phase-shift in diffusive transport time if the beta number is greater than one. It is also shown that diffusive mass transfer becomes independent of the oscillating outer flow if the Strouhal number is greater than one.
Resumo:
We consider the dynamics of an elastic sheet lubricated by the flow of a thin layer of fluid that separates it from a rigid wall. By considering long wavelength deformations of the sheet, we derive an evolution equation for its motion, accounting for the effects of elastic bending, viscous lubrication and body forces. We then analyze various steady and unsteady problems for the sheet such as peeling, healing, levitating and bursting using a combination of numerical simulation and dimensional analysis. On the macro-scale, we corroborate our theory with a simple experiment, and on the micro-scale, we analyze an oscillatory valve that can transform a continuous stream of fluid into a series of discrete pulses.