1 resultado para NOISY CHANNELS
em Massachusetts Institute of Technology
Filtro por publicador
- Repository Napier (1)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (4)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (81)
- Boston University Digital Common (1)
- CaltechTHESIS (6)
- Cambridge University Engineering Department Publications Database (124)
- CentAUR: Central Archive University of Reading - UK (57)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (46)
- Cochin University of Science & Technology (CUSAT), India (5)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (4)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (4)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (4)
- Indian Institute of Science - Bangalore - Índia (104)
- Instituto Politécnico do Porto, Portugal (3)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (109)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (13)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (192)
- Queensland University of Technology - ePrints Archive (44)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (31)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (10)
- Universidad de Alicante (7)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (9)
- Universidade Complutense de Madrid (1)
- Universidade de Madeira (1)
- Universidade Federal do Pará (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (4)
- University of Connecticut - USA (1)
- University of Michigan (15)
- University of Queensland eSpace - Australia (1)
- WestminsterResearch - UK (1)
Resumo:
A fast simulated annealing algorithm is developed for automatic object recognition. The normalized correlation coefficient is used as a measure of the match between a hypothesized object and an image. Templates are generated on-line during the search by transforming model images. Simulated annealing reduces the search time by orders of magnitude with respect to an exhaustive search. The algorithm is applied to the problem of how landmarks, for example, traffic signs, can be recognized by an autonomous vehicle or a navigating robot. The algorithm works well in noisy, real-world images of complicated scenes for model images with high information content.