1 resultado para Mutianus Rufus, Conradus, 1471-1526.
em Massachusetts Institute of Technology
Filtro por publicador
- Repository Napier (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberystwyth University Repository - Reino Unido (8)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- Aquatic Commons (6)
- Archive of European Integration (6)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (46)
- Biblioteca Digital de Artesanías de Colombia (2)
- Biblioteca Digital de la Universidad Católica Argentina (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Biblioteca Valenciana Digital - Ministerio de Educación, Cultura y Deporte - Valencia - Espanha (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (2)
- Boston University Digital Common (13)
- Brock University, Canada (4)
- Cámara de Comercio de Bogotá, Colombia (2)
- Cambridge University Engineering Department Publications Database (32)
- Carolina Law Scholarship Repository (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (56)
- Cochin University of Science & Technology (CUSAT), India (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (6)
- Digital Archives@Colby (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (9)
- Duke University (78)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (32)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (42)
- Greenwich Academic Literature Archive - UK (9)
- Harvard University (2)
- Helda - Digital Repository of University of Helsinki (10)
- Helvia: Repositorio Institucional de la Universidad de Córdoba (1)
- Indian Institute of Science - Bangalore - Índia (38)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (27)
- Ohio University (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (22)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (147)
- Queensland University of Technology - ePrints Archive (225)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório Institucional da Universidade Federal de São Paulo - UNIFESP (1)
- Repositorio Institucional de la Universidad Nacional Agraria (3)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad Autónoma de Nuevo León, Mexico (4)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (30)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (14)
- Université de Montréal, Canada (26)
- University of Michigan (45)
- University of Southampton, United Kingdom (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (3)
Resumo:
We propose a nonparametric method for estimating derivative financial asset pricing formulae using learning networks. To demonstrate feasibility, we first simulate Black-Scholes option prices and show that learning networks can recover the Black-Scholes formula from a two-year training set of daily options prices, and that the resulting network formula can be used successfully to both price and delta-hedge options out-of-sample. For comparison, we estimate models using four popular methods: ordinary least squares, radial basis functions, multilayer perceptrons, and projection pursuit. To illustrate practical relevance, we also apply our approach to S&P 500 futures options data from 1987 to 1991.