3 resultados para Murdock, Guy
em Massachusetts Institute of Technology
Resumo:
We have developed a compiler for the lexically-scoped dialect of LISP known as SCHEME. The compiler knows relatively little about specific data manipulation primitives such as arithmetic operators, but concentrates on general issues of environment and control. Rather than having specialized knowledge about a large variety of control and environment constructs, the compiler handles only a small basis set which reflects the semantics of lambda-calculus. All of the traditional imperative constructs, such as sequencing, assignment, looping, GOTO, as well as many standard LISP constructs such as AND, OR, and COND, are expressed in macros in terms of the applicative basis set. A small number of optimization techniques, coupled with the treatment of function calls as GOTO statements, serve to produce code as good as that produced by more traditional compilers. The macro approach enables speedy implementation of new constructs as desired without sacrificing efficiency in the generated code. A fair amount of analysis is devoted to determining whether environments may be stack-allocated or must be heap-allocated. Heap-allocated environments are necessary in general because SCHEME (unlike Algol 60 and Algol 68, for example) allows procedures with free lexically scoped variables to be returned as the values of other procedures; the Algol stack-allocation environment strategy does not suffice. The methods used here indicate that a heap-allocating generalization of the "display" technique leads to an efficient implementation of such "upward funargs". Moreover, compile-time optimization and analysis can eliminate many "funargs" entirely, and so far fewer environment structures need be allocated at run time than might be expected. A subset of SCHEME (rather than triples, for example) serves as the representation intermediate between the optimized SCHEME code and the final output code; code is expressed in this subset in the so-called continuation-passing style. As a subset of SCHEME, it enjoys the same theoretical properties; one could even apply the same optimizer used on the input code to the intermediate code. However, the subset is so chosen that all temporary quantities are made manifest as variables, and no control stack is needed to evaluate it. As a result, this apparently applicative representation admits an imperative interpretation which permits easy transcription to final imperative machine code. These qualities suggest that an applicative language like SCHEME is a better candidate for an UNCOL than the more imperative candidates proposed to date.
Resumo:
The constraint paradigm is a model of computation in which values are deduced whenever possible, under the limitation that deductions be local in a certain sense. One may visualize a constraint 'program' as a network of devices connected by wires. Data values may flow along the wires, and computation is performed by the devices. A device computes using only locally available information (with a few exceptions), and places newly derived values on other, locally attached wires. In this way computed values are propagated. An advantage of the constraint paradigm (not unique to it) is that a single relationship can be used in more than one direction. The connections to a device are not labelled as inputs and outputs; a device will compute with whatever values are available, and produce as many new values as it can. General theorem provers are capable of such behavior, but tend to suffer from combinatorial explosion; it is not usually useful to derive all the possible consequences of a set of hypotheses. The constraint paradigm places a certain kind of limitation on the deduction process. The limitations imposed by the constraint paradigm are not the only one possible. It is argued, however, that they are restrictive enough to forestall combinatorial explosion in many interesting computational situations, yet permissive enough to allow useful computations in practical situations. Moreover, the paradigm is intuitive: It is easy to visualize the computational effects of these particular limitations, and the paradigm is a natural way of expressing programs for certain applications, in particular relationships arising in computer-aided design. A number of implementations of constraint-based programming languages are presented. A progression of ever more powerful languages is described, complete implementations are presented and design difficulties and alternatives are discussed. The goal approached, though not quite reached, is a complete programming system which will implicitly support the constraint paradigm to the same extent that LISP, say, supports automatic storage management.
Resumo:
Computational models are arising is which programs are constructed by specifying large networks of very simple computational devices. Although such models can potentially make use of a massive amount of concurrency, their usefulness as a programming model for the design of complex systems will ultimately be decided by the ease in which such networks can be programmed (constructed). This thesis outlines a language for specifying computational networks. The language (AFL-1) consists of a set of primitives, ad a mechanism to group these elements into higher level structures. An implementation of this language runs on the Thinking Machines Corporation, Connection machine. Two significant examples were programmed in the language, an expert system (CIS), and a planning system (AFPLAN). These systems are explained and analyzed in terms of how they compare with similar systems written in conventional languages.