4 resultados para Multicommodity flow algorithms
em Massachusetts Institute of Technology
Resumo:
Bibliography: p. 22-24.
Resumo:
Several algorithms for optical flow are studied theoretically and experimentally. Differential and matching methods are examined; these two methods have differing domains of application- differential methods are best when displacements in the image are small (<2 pixels) while matching methods work well for moderate displacements but do not handle sub-pixel motions. Both types of optical flow algorithm can use either local or global constraints, such as spatial smoothness. Local matching and differential techniques and global differential techniques will be examined. Most algorithms for optical flow utilize weak assumptions on the local variation of the flow and on the variation of image brightness. Strengthening these assumptions improves the flow computation. The computational consequence of this is a need for larger spatial and temporal support. Global differential approaches can be extended to local (patchwise) differential methods and local differential methods using higher derivatives. Using larger support is valid when constraint on the local shape of the flow are satisfied. We show that a simple constraint on the local shape of the optical flow, that there is slow spatial variation in the image plane, is often satisfied. We show how local differential methods imply the constraints for related methods using higher derivatives. Experiments show the behavior of these optical flow methods on velocity fields which so not obey the assumptions. Implementation of these methods highlights the importance of numerical differentiation. Numerical approximation of derivatives require care, in two respects: first, it is important that the temporal and spatial derivatives be matched, because of the significant scale differences in space and time, and, second, the derivative estimates improve with larger support.
Resumo:
In this text, we present two stereo-based head tracking techniques along with a fast 3D model acquisition system. The first tracking technique is a robust implementation of stereo-based head tracking designed for interactive environments with uncontrolled lighting. We integrate fast face detection and drift reduction algorithms with a gradient-based stereo rigid motion tracking technique. Our system can automatically segment and track a user's head under large rotation and illumination variations. Precision and usability of this approach are compared with previous tracking methods for cursor control and target selection in both desktop and interactive room environments. The second tracking technique is designed to improve the robustness of head pose tracking for fast movements. Our iterative hybrid tracker combines constraints from the ICP (Iterative Closest Point) algorithm and normal flow constraint. This new technique is more precise for small movements and noisy depth than ICP alone, and more robust for large movements than the normal flow constraint alone. We present experiments which test the accuracy of our approach on sequences of real and synthetic stereo images. The 3D model acquisition system we present quickly aligns intensity and depth images, and reconstructs a textured 3D mesh. 3D views are registered with shape alignment based on our iterative hybrid tracker. We reconstruct the 3D model using a new Cubic Ray Projection merging algorithm which takes advantage of a novel data structure: the linked voxel space. We present experiments to test the accuracy of our approach on 3D face modelling using real-time stereo images.
Resumo:
In this paper a precorrected FFT-Fast Multipole Tree (pFFT-FMT) method for solving the potential flow around arbitrary three dimensional bodies is presented. The method takes advantage of the efficiency of the pFFT and FMT algorithms to facilitate more demanding computations such as automatic wake generation and hands-off steady and unsteady aerodynamic simulations. The velocity potential on the body surfaces and in the domain is determined using a pFFT Boundary Element Method (BEM) approach based on the Green’s Theorem Boundary Integral Equation. The vorticity trailing all lifting surfaces in the domain is represented using a Fast Multipole Tree, time advected, vortex participle method. Some simple steady state flow solutions are performed to demonstrate the basic capabilities of the solver. Although this paper focuses primarily on steady state solutions, it should be noted that this approach is designed to be a robust and efficient unsteady potential flow simulation tool, useful for rapid computational prototyping.