9 resultados para Multi- Choice mixed integer goal programming
em Massachusetts Institute of Technology
Resumo:
On October 19-22, 1997 the Second PHANToM Users Group Workshop was held at the MIT Endicott House in Dedham, Massachusetts. Designed as a forum for sharing results and insights, the workshop was attended by more than 60 participants from 7 countries. These proceedings report on workshop presentations in diverse areas including rigid and compliant rendering, tool kits, development environments, techniques for scientific data visualization, multi-modal issues and a programming tutorial.
Resumo:
The constraint paradigm is a model of computation in which values are deduced whenever possible, under the limitation that deductions be local in a certain sense. One may visualize a constraint 'program' as a network of devices connected by wires. Data values may flow along the wires, and computation is performed by the devices. A device computes using only locally available information (with a few exceptions), and places newly derived values on other, locally attached wires. In this way computed values are propagated. An advantage of the constraint paradigm (not unique to it) is that a single relationship can be used in more than one direction. The connections to a device are not labelled as inputs and outputs; a device will compute with whatever values are available, and produce as many new values as it can. General theorem provers are capable of such behavior, but tend to suffer from combinatorial explosion; it is not usually useful to derive all the possible consequences of a set of hypotheses. The constraint paradigm places a certain kind of limitation on the deduction process. The limitations imposed by the constraint paradigm are not the only one possible. It is argued, however, that they are restrictive enough to forestall combinatorial explosion in many interesting computational situations, yet permissive enough to allow useful computations in practical situations. Moreover, the paradigm is intuitive: It is easy to visualize the computational effects of these particular limitations, and the paradigm is a natural way of expressing programs for certain applications, in particular relationships arising in computer-aided design. A number of implementations of constraint-based programming languages are presented. A progression of ever more powerful languages is described, complete implementations are presented and design difficulties and alternatives are discussed. The goal approached, though not quite reached, is a complete programming system which will implicitly support the constraint paradigm to the same extent that LISP, say, supports automatic storage management.
Resumo:
This thesis defines Pi, a parallel architecture interface that separates model and machine issues, allowing them to be addressed independently. This provides greater flexibility for both the model and machine builder. Pi addresses a set of common parallel model requirements including low latency communication, fast task switching, low cost synchronization, efficient storage management, the ability to exploit locality, and efficient support for sequential code. Since Pi provides generic parallel operations, it can efficiently support many parallel programming models including hybrids of existing models. Pi also forms a basis of comparison for architectural components.
Resumo:
The goal of this research is to develop the prototype of a tactile sensing platform for anthropomorphic manipulation research. We investigate this problem through the fabrication and simple control of a planar 2-DOF robotic finger inspired by anatomic consistency, self-containment, and adaptability. The robot is equipped with a tactile sensor array based on optical transducer technology whereby localized changes in light intensity within an illuminated foam substrate correspond to the distribution and magnitude of forces applied to the sensor surface plane. The integration of tactile perception is a key component in realizing robotic systems which organically interact with the world. Such natural behavior is characterized by compliant performance that can initiate internal, and respond to external, force application in a dynamic environment. However, most of the current manipulators that support some form of haptic feedback either solely derive proprioceptive sensation or only limit tactile sensors to the mechanical fingertips. These constraints are due to the technological challenges involved in high resolution, multi-point tactile perception. In this work, however, we take the opposite approach, emphasizing the role of full-finger tactile feedback in the refinement of manual capabilities. To this end, we propose and implement a control framework for sensorimotor coordination analogous to infant-level grasping and fixturing reflexes. This thesis details the mechanisms used to achieve these sensory, actuation, and control objectives, along with the design philosophies and biological influences behind them. The results of behavioral experiments with a simple tactilely-modulated control scheme are also described. The hope is to integrate the modular finger into an %engineered analog of the human hand with a complete haptic system.
Resumo:
Most Artificial Intelligence (AI) work can be characterized as either ``high-level'' (e.g., logical, symbolic) or ``low-level'' (e.g., connectionist networks, behavior-based robotics). Each approach suffers from particular drawbacks. High-level AI uses abstractions that often have no relation to the way real, biological brains work. Low-level AI, on the other hand, tends to lack the powerful abstractions that are needed to express complex structures and relationships. I have tried to combine the best features of both approaches, by building a set of programming abstractions defined in terms of simple, biologically plausible components. At the ``ground level'', I define a primitive, perceptron-like computational unit. I then show how more abstract computational units may be implemented in terms of the primitive units, and show the utility of the abstract units in sample networks. The new units make it possible to build networks using concepts such as long-term memories, short-term memories, and frames. As a demonstration of these abstractions, I have implemented a simulator for ``creatures'' controlled by a network of abstract units. The creatures exist in a simple 2D world, and exhibit behaviors such as catching mobile prey and sorting colored blocks into matching boxes. This program demonstrates that it is possible to build systems that can interact effectively with a dynamic physical environment, yet use symbolic representations to control aspects of their behavior.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.