3 resultados para Morphing structures

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a statistical framework for object recognition. The framework is motivated by the pictorial structure models introduced by Fischler and Elschlager nearly 30 years ago. The basic idea is to model an object by a collection of parts arranged in a deformable configuration. The appearance of each part is modeled separately, and the deformable configuration is represented by spring-like connections between pairs of parts. These models allow for qualitative descriptions of visual appearance, and are suitable for generic recognition problems. The problem of detecting an object in an image and the problem of learning an object model using training examples are naturally formulated under a statistical approach. We present efficient algorithms to solve these problems in our framework. We demonstrate our techniques by training models to represent faces and human bodies. The models are then used to locate the corresponding objects in novel images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the differences --- conceptually and algorithmically --- between affine and projective frameworks for the tasks of visual recognition and reconstruction from perspective views. It is shown that an affine invariant exists between any view and a fixed view chosen as a reference view. This implies that for tasks for which a reference view can be chosen, such as in alignment schemes for visual recognition, projective invariants are not really necessary. We then use the affine invariant to derive new algebraic connections between perspective views. It is shown that three perspective views of an object are connected by certain algebraic functions of image coordinates alone (no structure or camera geometry needs to be involved).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present MikeTalk, a text-to-audiovisual speech synthesizer which converts input text into an audiovisual speech stream. MikeTalk is built using visemes, which are a small set of images spanning a large range of mouth shapes. The visemes are acquired from a recorded visual corpus of a human subject which is specifically designed to elicit one instantiation of each viseme. Using optical flow methods, correspondence from every viseme to every other viseme is computed automatically. By morphing along this correspondence, a smooth transition between viseme images may be generated. A complete visual utterance is constructed by concatenating viseme transitions. Finally, phoneme and timing information extracted from a text-to-speech synthesizer is exploited to determine which viseme transitions to use, and the rate at which the morphing process should occur. In this manner, we are able to synchronize the visual speech stream with the audio speech stream, and hence give the impression of a photorealistic talking face.