2 resultados para Montana State University (Missoula) Library.
em Massachusetts Institute of Technology
Resumo:
This report describes development of micro-fabricated piezoelectric ultrasonic motors and bulk-ceramic piezoelectric ultrasonic motors. Ultrasonic motors offer the advantage of low speed, high torque operation without the need for gears. They can be made compact and lightweight and provide a holding torque in the absence of applied power, due to the traveling wave frictional coupling mechanism between the rotor and the stator. This report covers modeling, simulation, fabrication and testing of ultrasonic motors. Design of experiments methods were also utilized to find optimal motor parameters. A suite of 8 mm diameter x 3 mm tall motors were machined for these studies and maximum stall torques as large as 10^(- 3) Nm, maximum no-load speeds of 1710 rpm and peak power outputs of 27 mW were realized. Aditionally, this report describes the implementation of a microfabricated ultrasonic motor using thin-film lead zirconate titanate. In a joint project with the Pennsylvania State University Materials Research Laboratory and MIT Lincoln Laboratory, 2 mm and 5 mm diameter stator structures were fabricated on 1 micron thick silicon nitride membranes. Small glass lenses placed down on top spun at 100-300 rpm with 4 V excitation at 90 kHz. The large power densities and stall torques of these piezoelectric ultrasonic motors offer tremendous promis for integrated machines: complete intelligent, electro-mechanical autonomous systems mass-produced in a single fabrication process.
Resumo:
This volume of the final report documents the technical work performed from December 1998 through December 2002 under Cooperative Agreement F33615-97-2-5153 executed between the U.S. Air Force, Air Force Research Laboratory, Materials and Manufacturing Directorate, Manufacturing Technology Division (AFRL/MLM) and the McDonnell Douglas Corporation, a wholly-owned subsidiary of The Boeing Company. The work was accomplished by The Boeing Company, Phantom Works, Huntington Beach, St. Louis, and Seattle; Ford Motor Company; Integral Inc.; Sloan School of Management in the Massachusetts Institute of Technology; Pratt & Whitney; and Central State University in Xenia, Ohio and in association with Raytheon Corporation. The LeanTEC program manager for AFRL is John Crabill of AFRL / MLMP and The Boeing Company program manager is Ed Shroyer of Boeing Phantom Works in Huntington Beach, CA. Financial performance under this contract is documented in the Financial Volume of the final report.