6 resultados para Modularité massive
em Massachusetts Institute of Technology
Resumo:
Most animals have significant behavioral expertise built in without having to explicitly learn it all from scratch. This expertise is a product of evolution of the organism; it can be viewed as a very long term form of learning which provides a structured system within which individuals might learn more specialized skills or abilities. This paper suggests one possible mechanism for analagous robot evolution by describing a carefully designed series of networks, each one being a strict augmentation of the previous one, which control a six legged walking machine capable of walking over rough terrain and following a person passively sensed in the infrared spectrum. As the completely decentralized networks are augmented, the robot's performance and behavior repertoire demonstrably improve. The rationale for such demonstrations is that they may provide a hint as to the requirements for automatically building massive networks to carry out complex sensory-motor tasks. The experiments with an actual robot ensure that an essence of reality is maintained and that no critical problems have been ignored.
Resumo:
Recent developments in microfabrication and nanotechnology will enable the inexpensive manufacturing of massive numbers of tiny computing elements with sensors and actuators. New programming paradigms are required for obtaining organized and coherent behavior from the cooperation of large numbers of unreliable processing elements that are interconnected in unknown, irregular, and possibly time-varying ways. Amorphous computing is the study of developing and programming such ultrascale computing environments. This paper presents an approach to programming an amorphous computer by spontaneously organizing an unstructured collection of processing elements into cooperative groups and hierarchies. This paper introduces a structure called an AC Hierarchy, which logically organizes processors into groups at different levels of granularity. The AC hierarchy simplifies programming of an amorphous computer through new language abstractions, facilitates the design of efficient and robust algorithms, and simplifies the analysis of their performance. Several example applications are presented that greatly benefit from the AC hierarchy. This paper introduces three algorithms for constructing multiple levels of the hierarchy from an unstructured collection of processors.
Resumo:
Parallel shared-memory machines with hundreds or thousands of processor-memory nodes have been built; in the future we will see machines with millions or even billions of nodes. Associated with such large systems is a new set of design challenges. Many problems must be addressed by an architecture in order for it to be successful; of these, we focus on three in particular. First, a scalable memory system is required. Second, the network messaging protocol must be fault-tolerant. Third, the overheads of thread creation, thread management and synchronization must be extremely low. This thesis presents the complete system design for Hamal, a shared-memory architecture which addresses these concerns and is directly scalable to one million nodes. Virtual memory and distributed objects are implemented in a manner that requires neither inter-node synchronization nor the storage of globally coherent translations at each node. We develop a lightweight fault-tolerant messaging protocol that guarantees message delivery and idempotence across a discarding network. A number of hardware mechanisms provide efficient support for massive multithreading and fine-grained synchronization. Experiments are conducted in simulation, using a trace-driven network simulator to investigate the messaging protocol and a cycle-accurate simulator to evaluate the Hamal architecture. We determine implementation parameters for the messaging protocol which optimize performance. A discarding network is easier to design and can be clocked at a higher rate, and we find that with this protocol its performance can approach that of a non-discarding network. Our simulations of Hamal demonstrate the effectiveness of its thread management and synchronization primitives. In particular, we find register-based synchronization to be an extremely efficient mechanism which can be used to implement a software barrier with a latency of only 523 cycles on a 512 node machine.
Resumo:
Computational models are arising is which programs are constructed by specifying large networks of very simple computational devices. Although such models can potentially make use of a massive amount of concurrency, their usefulness as a programming model for the design of complex systems will ultimately be decided by the ease in which such networks can be programmed (constructed). This thesis outlines a language for specifying computational networks. The language (AFL-1) consists of a set of primitives, ad a mechanism to group these elements into higher level structures. An implementation of this language runs on the Thinking Machines Corporation, Connection machine. Two significant examples were programmed in the language, an expert system (CIS), and a planning system (AFPLAN). These systems are explained and analyzed in terms of how they compare with similar systems written in conventional languages.
Resumo:
There are numerous text documents available in electronic form. More and more are becoming available every day. Such documents represent a massive amount of information that is easily accessible. Seeking value in this huge collection requires organization; much of the work of organizing documents can be automated through text classification. The accuracy and our understanding of such systems greatly influences their usefulness. In this paper, we seek 1) to advance the understanding of commonly used text classification techniques, and 2) through that understanding, improve the tools that are available for text classification. We begin by clarifying the assumptions made in the derivation of Naive Bayes, noting basic properties and proposing ways for its extension and improvement. Next, we investigate the quality of Naive Bayes parameter estimates and their impact on classification. Our analysis leads to a theorem which gives an explanation for the improvements that can be found in multiclass classification with Naive Bayes using Error-Correcting Output Codes. We use experimental evidence on two commonly-used data sets to exhibit an application of the theorem. Finally, we show fundamental flaws in a commonly-used feature selection algorithm and develop a statistics-based framework for text feature selection. Greater understanding of Naive Bayes and the properties of text allows us to make better use of it in text classification.
Resumo:
As the number of processors in distributed-memory multiprocessors grows, efficiently supporting a shared-memory programming model becomes difficult. We have designed the Protocol for Hierarchical Directories (PHD) to allow shared-memory support for systems containing massive numbers of processors. PHD eliminates bandwidth problems by using a scalable network, decreases hot-spots by not relying on a single point to distribute blocks, and uses a scalable amount of space for its directories. PHD provides a shared-memory model by synthesizing a global shared memory from the local memories of processors. PHD supports sequentially consistent read, write, and test- and-set operations. This thesis also introduces a method of describing locality for hierarchical protocols and employs this method in the derivation of an abstract model of the protocol behavior. An embedded model, based on the work of Johnson[ISCA19], describes the protocol behavior when mapped to a k-ary n-cube. The thesis uses these two models to study the average height in the hierarchy that operations reach, the longest path messages travel, the number of messages that operations generate, the inter-transaction issue time, and the protocol overhead for different locality parameters, degrees of multithreading, and machine sizes. We determine that multithreading is only useful for approximately two to four threads; any additional interleaving does not decrease the overall latency. For small machines and high locality applications, this limitation is due mainly to the length of the running threads. For large machines with medium to low locality, this limitation is due mainly to the protocol overhead being too large. Our study using the embedded model shows that in situations where the run length between references to shared memory is at least an order of magnitude longer than the time to process a single state transition in the protocol, applications exhibit good performance. If separate controllers for processing protocol requests are included, the protocol scales to 32k processor machines as long as the application exhibits hierarchical locality: at least 22% of the global references must be able to be satisfied locally; at most 35% of the global references are allowed to reach the top level of the hierarchy.