1 resultado para Model theory
em Massachusetts Institute of Technology
Filtro por publicador
- Aberdeen University (1)
 - Academic Research Repository at Institute of Developing Economies (5)
 - Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
 - AMS Tesi di Dottorato - Alm@DL - Università di Bologna (13)
 - AMS Tesi di Laurea - Alm@DL - Università di Bologna (6)
 - ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (5)
 - Aston University Research Archive (2)
 - Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (31)
 - Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (61)
 - BORIS: Bern Open Repository and Information System - Berna - Suiça (45)
 - Brock University, Canada (17)
 - Bucknell University Digital Commons - Pensilvania - USA (4)
 - CentAUR: Central Archive University of Reading - UK (96)
 - Central European University - Research Support Scheme (1)
 - Clark Digital Commons--knowledge; creativity; research; and innovation of Clark University (1)
 - Cochin University of Science & Technology (CUSAT), India (9)
 - Collection Of Biostatistics Research Archive (10)
 - Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
 - Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (117)
 - Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
 - CUNY Academic Works (1)
 - Dalarna University College Electronic Archive (4)
 - Digital Commons - Michigan Tech (2)
 - Digital Commons @ DU | University of Denver Research (1)
 - Digital Commons at Florida International University (3)
 - Digital Peer Publishing (4)
 - DigitalCommons - The University of Maine Research (1)
 - DigitalCommons@The Texas Medical Center (10)
 - DigitalCommons@University of Nebraska - Lincoln (3)
 - Diposit Digital de la UB - Universidade de Barcelona (13)
 - Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (27)
 - Illinois Digital Environment for Access to Learning and Scholarship Repository (3)
 - Institute of Public Health in Ireland, Ireland (1)
 - Instituto Politécnico do Porto, Portugal (9)
 - Massachusetts Institute of Technology (1)
 - Memoria Académica - FaHCE, UNLP - Argentina (3)
 - National Center for Biotechnology Information - NCBI (1)
 - Publishing Network for Geoscientific & Environmental Data (8)
 - RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
 - Repositório Científico da Universidade de Évora - Portugal (2)
 - Repositório Científico do Instituto Politécnico de Lisboa - Portugal (16)
 - Repositório da Produção Científica e Intelectual da Unicamp (1)
 - Repositório digital da Fundação Getúlio Vargas - FGV (23)
 - Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
 - Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (118)
 - RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (7)
 - Scielo Saúde Pública - SP (10)
 - Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (9)
 - Universidad del Rosario, Colombia (4)
 - Universidad Politécnica de Madrid (3)
 - Universidade do Minho (4)
 - Universidade dos Açores - Portugal (1)
 - Universitat de Girona, Spain (4)
 - Universitätsbibliothek Kassel, Universität Kassel, Germany (7)
 - Université de Lausanne, Switzerland (34)
 - Université de Montréal, Canada (14)
 - University of Connecticut - USA (5)
 - University of Michigan (4)
 - University of Queensland eSpace - Australia (68)
 - University of Washington (1)
 
                                
Resumo:
In order to estimate the motion of an object, the visual system needs to combine multiple local measurements, each of which carries some degree of ambiguity. We present a model of motion perception whereby measurements from different image regions are combined according to a Bayesian estimator --- the estimated motion maximizes the posterior probability assuming a prior favoring slow and smooth velocities. In reviewing a large number of previously published phenomena we find that the Bayesian estimator predicts a wide range of psychophysical results. This suggests that the seemingly complex set of illusions arise from a single computational strategy that is optimal under reasonable assumptions.