5 resultados para Minimization of open stack problem

em Massachusetts Institute of Technology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of minimizing a multivariate function is recurrent in many disciplines as Physics, Mathematics, Engeneering and, of course, Computer Science. In this paper we describe a simple nondeterministic algorithm which is based on the idea of adaptive noise, and that proved to be particularly effective in the minimization of a class of multivariate, continuous valued, smooth functions, associated with some recent extension of regularization theory by Poggio and Girosi (1990). Results obtained by using this method and a more traditional gradient descent technique are also compared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of matching model and sensory data features in the presence of geometric uncertainty, for the purpose of object localization and identification. The problem is to construct sets of model feature and sensory data feature pairs that are geometrically consistent given that there is uncertainty in the geometry of the sensory data features. If there is no geometric uncertainty, polynomial-time algorithms are possible for feature matching, yet these approaches can fail when there is uncertainty in the geometry of data features. Existing matching and recognition techniques which account for the geometric uncertainty in features either cannot guarantee finding a correct solution, or can construct geometrically consistent sets of feature pairs yet have worst case exponential complexity in terms of the number of features. The major new contribution of this work is to demonstrate a polynomial-time algorithm for constructing sets of geometrically consistent feature pairs given uncertainty in the geometry of the data features. We show that under a certain model of geometric uncertainty the feature matching problem in the presence of uncertainty is of polynomial complexity. This has important theoretical implications by demonstrating an upper bound on the complexity of the matching problem, an by offering insight into the nature of the matching problem itself. These insights prove useful in the solution to the matching problem in higher dimensional cases as well, such as matching three-dimensional models to either two or three-dimensional sensory data. The approach is based on an analysis of the space of feasible transformation parameters. This paper outlines the mathematical basis for the method, and describes the implementation of an algorithm for the procedure. Experiments demonstrating the method are reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The motion planning problem is of central importance to the fields of robotics, spatial planning, and automated design. In robotics we are interested in the automatic synthesis of robot motions, given high-level specifications of tasks and geometric models of the robot and obstacles. The Mover's problem is to find a continuous, collision-free path for a moving object through an environment containing obstacles. We present an implemented algorithm for the classical formulation of the three-dimensional Mover's problem: given an arbitrary rigid polyhedral moving object P with three translational and three rotational degrees of freedom, find a continuous, collision-free path taking P from some initial configuration to a desired goal configuration. This thesis describes the first known implementation of a complete algorithm (at a given resolution) for the full six degree of freedom Movers' problem. The algorithm transforms the six degree of freedom planning problem into a point navigation problem in a six-dimensional configuration space (called C-Space). The C-Space obstacles, which characterize the physically unachievable configurations, are directly represented by six-dimensional manifolds whose boundaries are five dimensional C-surfaces. By characterizing these surfaces and their intersections, collision-free paths may be found by the closure of three operators which (i) slide along 5-dimensional intersections of level C-Space obstacles; (ii) slide along 1- to 4-dimensional intersections of level C-surfaces; and (iii) jump between 6 dimensional obstacles. Implementing the point navigation operators requires solving fundamental representational and algorithmic questions: we will derive new structural properties of the C-Space constraints and shoe how to construct and represent C-Surfaces and their intersection manifolds. A definition and new theoretical results are presented for a six-dimensional C-Space extension of the generalized Voronoi diagram, called the C-Voronoi diagram, whose structure we relate to the C-surface intersection manifolds. The representations and algorithms we develop impact many geometric planning problems, and extend to Cartesian manipulators with six degrees of freedom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The report describes a recognition system called GROPER, which performs grouping by using distance and relative orientation constraints that estimate the likelihood of different edges in an image coming from the same object. The thesis presents both a theoretical analysis of the grouping problem and a practical implementation of a grouping system. GROPER also uses an indexing module to allow it to make use of knowledge of different objects, any of which might appear in an image. We test GROPER by comparing it to a similar recognition system that does not use grouping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the problem of finding sparse representations of a class of signals. We formalize the problem and prove it is NP-complete both in the case of a single signal and that of multiple ones. Next we develop a simple approximation method to the problem and we show experimental results using artificially generated signals. Furthermore,we use our approximation method to find sparse representations of classes of real signals, specifically of images of pedestrians. We discuss the relation between our formulation of the sparsity problem and the problem of finding representations of objects that are compact and appropriate for detection and classification.