2 resultados para Memorandum of Understanding
em Massachusetts Institute of Technology
Resumo:
Artificial Intelligence research involves the creation of extremely complex programs which must possess the capability to introspect, learn, and improve their expertise. Any truly intelligent program must be able to create procedures and to modify them as it gathers information from its experience. [Sussman, 1975] produced such a system for a 'mini-world'; but truly intelligent programs must be considerably more complex. A crucial stepping stone in AI research is the development of a system which can understand complex programs well enough to modify them. There is also a complexity barrier in the world of commercial software which is making the cost of software production and maintenance prohibitive. Here too a system which is capable of understanding complex programs is a necessary step. The Programmer's Apprentice Project [Rich and Shrobe, 76] is attempting to develop an interactive programming tool which will help expert programmers deal with the complexity involved in engineering a large software system. This report describes REASON, the deductive component of the programmer's apprentice. REASON is intended to help expert programmers in the process of evolutionary program design. REASON utilizes the engineering techniques of modelling, decomposition, and analysis by inspection to determine how modules interact to achieve the desired overall behavior of a program. REASON coordinates its various sources of knowledge by using a dependency-directed structure which records the justification for each deduction it makes. Once a program has been analyzed these justifications can be summarized into a teleological structure called a plan which helps the system understand the impact of a proposed program modification.
Resumo:
What are the characteristics of the process by which an intent is transformed into a plan and then a program? How is a program debugged? This paper analyzes these questions in the context of understanding simple turtle programs. To understand and debug a program, a description of its intent is required. For turtle programs, this is a model of the desired geometric picture. a picture language is provided for this purpose. Annotation is necessary for documenting the performance of a program in such a way that the system can examine the procedures behavior as well as consider hypothetical lines of development due to tentative debugging edits. A descriptive framework representing both causality and teleology is developed. To understand the relation between program and model, the plan must be known. The plan is a description of the methodology for accomplishing the model. Concepts are explicated for translating the global intent of a declarative model into the local imperative code of a program. Given the plan, model and program, the system can interpret the picture and recognize inconsistencies. The description of the discrepancies between the picture actually produced by the program and the intended scene is the input to a debugging system. Repair of the program is based on a combination of general debugging techniques and specific fixing knowledge associated with the geometric model primitives. In both the plan and repairing the bugs, the system exhibits an interesting style of analysis. It is capable of debugging itself and reformulating its analysis of a plan or bug in response to self-criticism. In this fashion, it can qualitatively reformulate its theory of the program or error to account for surprises or anomalies.