2 resultados para Maximum design load

em Massachusetts Institute of Technology


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This report describes development of micro-fabricated piezoelectric ultrasonic motors and bulk-ceramic piezoelectric ultrasonic motors. Ultrasonic motors offer the advantage of low speed, high torque operation without the need for gears. They can be made compact and lightweight and provide a holding torque in the absence of applied power, due to the traveling wave frictional coupling mechanism between the rotor and the stator. This report covers modeling, simulation, fabrication and testing of ultrasonic motors. Design of experiments methods were also utilized to find optimal motor parameters. A suite of 8 mm diameter x 3 mm tall motors were machined for these studies and maximum stall torques as large as 10^(- 3) Nm, maximum no-load speeds of 1710 rpm and peak power outputs of 27 mW were realized. Aditionally, this report describes the implementation of a microfabricated ultrasonic motor using thin-film lead zirconate titanate. In a joint project with the Pennsylvania State University Materials Research Laboratory and MIT Lincoln Laboratory, 2 mm and 5 mm diameter stator structures were fabricated on 1 micron thick silicon nitride membranes. Small glass lenses placed down on top spun at 100-300 rpm with 4 V excitation at 90 kHz. The large power densities and stall torques of these piezoelectric ultrasonic motors offer tremendous promis for integrated machines: complete intelligent, electro-mechanical autonomous systems mass-produced in a single fabrication process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a new approach to building a design for testability (DFT) system. The system takes a digital circuit description, finds out the problems in testing it, and suggests circuit modifications to correct those problems. The key contributions of the thesis research are (1) setting design for testability in the context of test generation (TG), (2) using failures during FG to focus on testability problems, and (3) relating circuit modifications directly to the failures. A natural functionality set is used to represent the maximum functionalities that a component can have. The current implementation has only primitive domain knowledge and needs other work as well. However, armed with the knowledge of TG, it has already demonstrated its ability and produced some interesting results on a simple microprocessor.