5 resultados para Mathematical skills
em Massachusetts Institute of Technology
Resumo:
Over the next five years, computer games will find their way into a vast number of American homes, creating a unique educational opportunity: the development of "computer coaches" for the serious intellectual skills required by some of these games. From the player's perspective, the coach will provide advice regarding strategy and tactics for better play. But, from the perspective of the coach, the request for help is an opportunity to tutor basic mathematical, scientific or other kinds of knowledge that the game exercises.
Resumo:
A large computer program has been developed to aid applied mathematicians in the solution of problems in non-numerical analysis which involve tedious manipulations of mathematical expressions. The mathematician uses typed commands and a light pen to direct the computer in the application of mathematical transformations; the intermediate results are displayed in standard text-book format so that the system user can decide the next step in the problem solution. Three problems selected from the literature have been solved to illustrate the use of the system. A detailed analysis of the problems of input, transformation, and display of mathematical expressions is also presented.
Resumo:
This report develops a conceptual framework in which to talk about mathematical knowledge. There are several broad categories of mathematical knowledge: results which contain the traditional logical aspects of mathematics; examples which contain illustrative material; and concepts which include formal and informal ideas, that is, definitions and heuristics.
Resumo:
In recent years, researchers in artificial intelligence have become interested in replicating human physical reasoning talents in computers. One of the most important skills in this area is predicting how physical systems will behave. This thesis discusses an implemented program that generates algebraic descriptions of how systems of rigid bodies evolve over time. Discussion about the design of this program identifies a physical reasoning paradigm and knowledge representation approach based on mathematical model construction and algebraic reasoning. This paradigm offers several advantages over methods that have become popular in the field, and seems promising for reasoning about a wide variety of classical mechanics problems.
Resumo:
This paper reports on results from five companies in the aerospace and automotive industries to show that over-commitment of technical professionals and under-representation of key skills on technology development and transition teams seriously impairs team performance. The research finds that 40 percent of the projects studied were inadequately staffed, resulting in weaker team communications and alignment. Most importantly, the weak staffing on these teams is found to be associated with a doubling of project failure rate to reach full production. Those weakly staffed teams that did successfully insert technology into production systems were also much more likely than other teams to have development delays and late engineering changes. The conclusion suggests that the expense of project failure, delay and late engineering changes in these companies must greatly out-weigh the savings gained from reduced staffing costs, and that this problem is likely going to be found in other technology-intensive firms intent on seeing project budgets as a cost to be minimized rather than an investment to be maximized.