10 resultados para Markov jump parameter
em Massachusetts Institute of Technology
Resumo:
In a recent seminal paper, Gibson and Wexler (1993) take important steps to formalizing the notion of language learning in a (finite) space whose grammars are characterized by a finite number of parameters. They introduce the Triggering Learning Algorithm (TLA) and show that even in finite space convergence may be a problem due to local maxima. In this paper we explicitly formalize learning in finite parameter space as a Markov structure whose states are parameter settings. We show that this captures the dynamics of TLA completely and allows us to explicitly compute the rates of convergence for TLA and other variants of TLA e.g. random walk. Also included in the paper are a corrected version of GW's central convergence proof, a list of "problem states" in addition to local maxima, and batch and PAC-style learning bounds for the model.
Resumo:
Compliant control is a standard method for performing fine manipulation tasks, like grasping and assembly, but it requires estimation of the state of contact between the robot arm and the objects involved. Here we present a method to learn a model of the movement from measured data. The method requires little or no prior knowledge and the resulting model explicitly estimates the state of contact. The current state of contact is viewed as the hidden state variable of a discrete HMM. The control dependent transition probabilities between states are modeled as parametrized functions of the measurement We show that their parameters can be estimated from measurements concurrently with the estimation of the parameters of the movement in each state of contact. The learning algorithm is a variant of the EM procedure. The E step is computed exactly; solving the M step exactly would require solving a set of coupled nonlinear algebraic equations in the parameters. Instead, gradient ascent is used to produce an increase in likelihood.
Resumo:
Example-based methods are effective for parameter estimation problems when the underlying system is simple or the dimensionality of the input is low. For complex and high-dimensional problems such as pose estimation, the number of required examples and the computational complexity rapidly becme prohibitively high. We introduce a new algorithm that learns a set of hashing functions that efficiently index examples relevant to a particular estimation task. Our algorithm extends a recently developed method for locality-sensitive hashing, which finds approximate neighbors in time sublinear in the number of examples. This method depends critically on the choice of hash functions; we show how to find the set of hash functions that are optimally relevant to a particular estimation problem. Experiments demonstrate that the resulting algorithm, which we call Parameter-Sensitive Hashing, can rapidly and accurately estimate the articulated pose of human figures from a large database of example images.
Resumo:
This report studies when and why two Hidden Markov Models (HMMs) may represent the same stochastic process. HMMs are characterized in terms of equivalence classes whose elements represent identical stochastic processes. This characterization yields polynomial time algorithms to detect equivalent HMMs. We also find fast algorithms to reduce HMMs to essentially unique and minimal canonical representations. The reduction to a canonical form leads to the definition of 'Generalized Markov Models' which are essentially HMMs without the positivity constraint on their parameters. We discuss how this generalization can yield more parsimonious representations of stochastic processes at the cost of the probabilistic interpretation of the model parameters.
Resumo:
This report examines how to estimate the parameters of a chaotic system given noisy observations of the state behavior of the system. Investigating parameter estimation for chaotic systems is interesting because of possible applications for high-precision measurement and for use in other signal processing, communication, and control applications involving chaotic systems. In this report, we examine theoretical issues regarding parameter estimation in chaotic systems and develop an efficient algorithm to perform parameter estimation. We discover two properties that are helpful for performing parameter estimation on non-structurally stable systems. First, it turns out that most data in a time series of state observations contribute very little information about the underlying parameters of a system, while a few sections of data may be extraordinarily sensitive to parameter changes. Second, for one-parameter families of systems, we demonstrate that there is often a preferred direction in parameter space governing how easily trajectories of one system can "shadow'" trajectories of nearby systems. This asymmetry of shadowing behavior in parameter space is proved for certain families of maps of the interval. Numerical evidence indicates that similar results may be true for a wide variety of other systems. Using the two properties cited above, we devise an algorithm for performing parameter estimation. Standard parameter estimation techniques such as the extended Kalman filter perform poorly on chaotic systems because of divergence problems. The proposed algorithm achieves accuracies several orders of magnitude better than the Kalman filter and has good convergence properties for large data sets.
Resumo:
We consider an online learning scenario in which the learner can make predictions on the basis of a fixed set of experts. The performance of each expert may change over time in a manner unknown to the learner. We formulate a class of universal learning algorithms for this problem by expressing them as simple Bayesian algorithms operating on models analogous to Hidden Markov Models (HMMs). We derive a new performance bound for such algorithms which is considerably simpler than existing bounds. The bound provides the basis for learning the rate at which the identity of the optimal expert switches over time. We find an analytic expression for the a priori resolution at which we need to learn the rate parameter. We extend our scalar switching-rate result to models of the switching-rate that are governed by a matrix of parameters, i.e. arbitrary homogeneous HMMs. We apply and examine our algorithm in the context of the problem of energy management in wireless networks. We analyze the new results in the framework of Information Theory.
Resumo:
Graphical techniques for modeling the dependencies of randomvariables have been explored in a variety of different areas includingstatistics, statistical physics, artificial intelligence, speech recognition, image processing, and genetics.Formalisms for manipulating these models have been developedrelatively independently in these research communities. In this paper weexplore hidden Markov models (HMMs) and related structures within the general framework of probabilistic independencenetworks (PINs). The paper contains a self-contained review of the basic principles of PINs.It is shown that the well-known forward-backward (F-B) and Viterbialgorithms for HMMs are special cases of more general inference algorithms forarbitrary PINs. Furthermore, the existence of inference and estimationalgorithms for more general graphical models provides a set of analysistools for HMM practitioners who wish to explore a richer class of HMMstructures.Examples of relatively complex models to handle sensorfusion and coarticulationin speech recognitionare introduced and treated within the graphical model framework toillustrate the advantages of the general approach.
Resumo:
We present a framework for learning in hidden Markov models with distributed state representations. Within this framework, we derive a learning algorithm based on the Expectation--Maximization (EM) procedure for maximum likelihood estimation. Analogous to the standard Baum-Welch update rules, the M-step of our algorithm is exact and can be solved analytically. However, due to the combinatorial nature of the hidden state representation, the exact E-step is intractable. A simple and tractable mean field approximation is derived. Empirical results on a set of problems suggest that both the mean field approximation and Gibbs sampling are viable alternatives to the computationally expensive exact algorithm.
Resumo:
We present a technique for the rapid and reliable evaluation of linear-functional output of elliptic partial differential equations with affine parameter dependence. The essential components are (i) rapidly uniformly convergent reduced-basis approximations — Galerkin projection onto a space WN spanned by solutions of the governing partial differential equation at N (optimally) selected points in parameter space; (ii) a posteriori error estimation — relaxations of the residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs; and (iii) offline/online computational procedures — stratagems that exploit affine parameter dependence to de-couple the generation and projection stages of the approximation process. The operation count for the online stage — in which, given a new parameter value, we calculate the output and associated error bound — depends only on N (typically small) and the parametric complexity of the problem. The method is thus ideally suited to the many-query and real-time contexts. In this paper, based on the technique we develop a robust inverse computational method for very fast solution of inverse problems characterized by parametrized partial differential equations. The essential ideas are in three-fold: first, we apply the technique to the forward problem for the rapid certified evaluation of PDE input-output relations and associated rigorous error bounds; second, we incorporate the reduced-basis approximation and error bounds into the inverse problem formulation; and third, rather than regularize the goodness-of-fit objective, we may instead identify all (or almost all, in the probabilistic sense) system configurations consistent with the available experimental data — well-posedness is reflected in a bounded "possibility region" that furthermore shrinks as the experimental error is decreased.
Resumo:
This paper analyzes a proposed release controlmethodology, WIPLOAD Control (WIPLCtrl), using a transfer line case modeled by Markov process modeling methodology. The performance of WIPLCtrl is compared with that of CONWIP under 13 system configurations in terms of throughput, average inventory level, as well as average cycle time. As a supplement to the analytical model, a simulation model of the transfer line is used to observe the performance of the release control methodologies on the standard deviation of cycle time. From the analysis, we identify the system configurations in which the advantages of WIPLCtrl could be observed.