4 resultados para Market failures
em Massachusetts Institute of Technology
Resumo:
This report investigates some techinques appropriate to representing the knowledge necessary for understanding a class of electronic machines -- radio receivers. A computational performance model - WATSON - is presented. WATSONs task is to isolate failures in radio receivers whose principles of operation have been appropriately described in his knowledge base. The thesis of the report is that hierarchically organized representational structures are essential to the understanding of complex mechanisms. Such structures lead not only to descriptions of machine operation at many levels of detail, but also offer a powerful means of organizing "specialist" knowledge for the repair of machines when they are broken.
Resumo:
This paper presents an adaptive learning model for market-making under the reinforcement learning framework. Reinforcement learning is a learning technique in which agents aim to maximize the long-term accumulated rewards. No knowledge of the market environment, such as the order arrival or price process, is assumed. Instead, the agent learns from real-time market experience and develops explicit market-making strategies, achieving multiple objectives including the maximizing of profits and minimization of the bid-ask spread. The simulation results show initial success in bringing learning techniques to building market-making algorithms.
Resumo:
Stock markets employ specialized traders, market-makers, designed to provide liquidity and volume to the market by constantly supplying both supply and demand. In this paper, we demonstrate a novel method for modeling the market as a dynamic system and a reinforcement learning algorithm that learns profitable market-making strategies when run on this model. The sequence of buys and sells for a particular stock, the order flow, we model as an Input-Output Hidden Markov Model fit to historical data. When combined with the dynamics of the order book, this creates a highly non-linear and difficult dynamic system. Our reinforcement learning algorithm, based on likelihood ratios, is run on this partially-observable environment. We demonstrate learning results for two separate real stocks.
Resumo:
In this paper, we discuss the consensus problem for synchronous distributed systems with orderly crash failures. For a synchronous distributed system of n processes with up to t crash failures and f failures actually occur, first, we present a bivalency argument proof to solve the open problem of proving the lower bound, min (t + 1, f + 2) rounds, for early-stopping synchronous consensus with orderly crash failures, where t < n - 1. Then, we extend the system model with orderly crash failures to a new model in which a process is allowed to send multiple messages to the same destination process in a round and the failing processes still respect the order specified by the protocol in sending messages. For this new model, we present a uniform consensus protocol, in which all non-faulty processes always decide and stop immediately by the end of f + 1 rounds. We prove that the lower bound of early stopping protocols for both consensus and uniform consensus are f + 1 rounds under the new model, and our proposed protocol is optimal.