5 resultados para Machine-tools
em Massachusetts Institute of Technology
Resumo:
The Jellybean Machine is a scalable MIMD concurrent processor consisting of special purpose RISC processors loosely coupled into a low latency network. I have developed an operating system to provide the supportive environment required to efficiently coordinate the collective power of the distributed processing elements. The system services are developed in detail, and may be of interest to other designers of fine grain, distributed memory processing networks.
Resumo:
The amount of computation required to solve many early vision problems is prodigious, and so it has long been thought that systems that operate in a reasonable amount of time will only become feasible when parallel systems become available. Such systems now exist in digital form, but most are large and expensive. These machines constitute an invaluable test-bed for the development of new algorithms, but they can probably not be scaled down rapidly in both physical size and cost, despite continued advances in semiconductor technology and machine architecture. Simple analog networks can perform interesting computations, as has been known for a long time. We have reached the point where it is feasible to experiment with implementation of these ideas in VLSI form, particularly if we focus on networks composed of locally interconnected passive elements, linear amplifiers, and simple nonlinear components. While there have been excursions into the development of ideas in this area since the very beginnings of work on machine vision, much work remains to be done. Progress will depend on careful attention to matching of the capabilities of simple networks to the needs of early vision. Note that this is not at all intended to be anything like a review of the field, but merely a collection of some ideas that seem to be interesting.
Resumo:
The M-Machine is an experimental multicomputer being developed to test architectural concepts motivated by the constraints of modern semiconductor technology and the demands of programming systems. The M- Machine computing nodes are connected with a 3-D mesh network; each node is a multithreaded processor incorporating 12 function units, on-chip cache, and local memory. The multiple function units are used to exploit both instruction-level and thread-level parallelism. A user accessible message passing system yields fast communication and synchronization between nodes. Rapid access to remote memory is provided transparently to the user with a combination of hardware and software mechanisms. This paper presents the architecture of the M-Machine and describes how its mechanisms maximize both single thread performance and overall system throughput.
Resumo:
In this note, I propose two extensions to the Java virtual machine (or VM) to allow dynamic languages such as Dylan, Scheme and Smalltalk to be efficiently implemented on the VM. These extensions do not affect the performance of pure Java programs on the machine. The first extension allows for efficient encoding of dynamic data; the second allows for efficient encoding of language-specific computational elements.
Resumo:
The development of increasingly sophisticated and powerful computers in the last few decades has frequently stimulated comparisons between them and the human brain. Such comparisons will become more earnest as computers are applied more and more to tasks formerly associated with essentially human activities and capabilities. The expectation of a coming generation of "intelligent" computers and robots with sensory, motor and even "intellectual" skills comparable in quality to (and quantitatively surpassing) our own is becoming more widespread and is, I believe, leading to a new and potentially productive analytical science of "information processing". In no field has this new approach been so precisely formulated and so thoroughly exemplified as in the field of vision. As the dominant sensory modality of man, vision is one of the major keys to our mastery of the environment, to our understanding and control of the objects which surround us. If we wish to created robots capable of performing complex manipulative tasks in a changing environment, we must surely endow them with (among other things) adequate visual powers. How can we set about designing such flexible and adaptive robots? In designing them, can we make use of our rapidly growing knowledge of the human brain, and if so, how at the same time, can our experiences in designing artificial vision systems help us to understand how the brain analyzes visual information?