1 resultado para Machiavelli, Niccolò, 1469-1527.
em Massachusetts Institute of Technology
Filtro por publicador
- Repository Napier (2)
- Aberystwyth University Repository - Reino Unido (14)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (2)
- Aquatic Commons (2)
- Archive of European Integration (3)
- Biblioteca Digital da Câmara dos Deputados (4)
- Biblioteca Digital de la Universidad Católica Argentina (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Biblioteca Digital Loyola - Universidad de Deusto (6)
- Biblioteca Valenciana Digital - Ministerio de Educación, Cultura y Deporte - Valencia - Espanha (5)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (1)
- Boston University Digital Common (3)
- Brock University, Canada (3)
- Cámara de Comercio de Bogotá, Colombia (2)
- Cambridge University Engineering Department Publications Database (7)
- Carolina Law Scholarship Repository (1)
- CentAUR: Central Archive University of Reading - UK (305)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (61)
- Cochin University of Science & Technology (CUSAT), India (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (71)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (15)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (9)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (82)
- Greenwich Academic Literature Archive - UK (19)
- Harvard University (2)
- Helda - Digital Repository of University of Helsinki (2)
- Indian Institute of Science - Bangalore - Índia (20)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (18)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (7)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- Publishing Network for Geoscientific & Environmental Data (23)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (86)
- Queensland University of Technology - ePrints Archive (39)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade Federal de São Paulo - UNIFESP (3)
- Repositorio Institucional de la Universidad de La Laguna (1)
- Repositorio Institucional de la Universidad Nacional Agraria (4)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (1)
- School of Medicine, Washington University, United States (2)
- Universidad Autónoma de Nuevo León, Mexico (15)
- Universidad del Rosario, Colombia (23)
- Universidade de Lisboa - Repositório Aberto (2)
- Universita di Parma (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (15)
- Université de Montréal, Canada (5)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (69)
- University of Queensland eSpace - Australia (1)
- University of Southampton, United Kingdom (1)
- WestminsterResearch - UK (5)
- Worcester Research and Publications - Worcester Research and Publications - UK (4)
Resumo:
Object recognition is complicated by clutter, occlusion, and sensor error. Since pose hypotheses are based on image feature locations, these effects can lead to false negatives and positives. In a typical recognition algorithm, pose hypotheses are tested against the image, and a score is assigned to each hypothesis. We use a statistical model to determine the score distribution associated with correct and incorrect pose hypotheses, and use binary hypothesis testing techniques to distinguish between them. Using this approach we can compare algorithms and noise models, and automatically choose values for internal system thresholds to minimize the probability of making a mistake.