1 resultado para MS-based methods
em Massachusetts Institute of Technology
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (31)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (7)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (11)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (3)
- Archive of European Integration (2)
- Aston University Research Archive (24)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (22)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (128)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (5)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (63)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CentAUR: Central Archive University of Reading - UK (48)
- Central European University - Research Support Scheme (1)
- Cochin University of Science & Technology (CUSAT), India (10)
- Collection Of Biostatistics Research Archive (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (23)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Dalarna University College Electronic Archive (8)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons - Michigan Tech (3)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (22)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (11)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (39)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (2)
- Greenwich Academic Literature Archive - UK (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institutional Repository of Leibniz University Hannover (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico do Porto, Portugal (8)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- National Aerospace Laboratory (NLR) Reports Repository (1)
- National Center for Biotechnology Information - NCBI (5)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (7)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (9)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório da Produção Científica e Intelectual da Unicamp (9)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (61)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (8)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo España (1)
- Scielo Saúde Pública - SP (28)
- Scientific Open-access Literature Archive and Repository (2)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (9)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (57)
- Universidade do Minho (2)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Técnica de Lisboa (1)
- Universita di Parma (3)
- Universitat de Girona, Spain (9)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (79)
- Université de Montréal, Canada (8)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (1)
- University of Michigan (4)
- University of Queensland eSpace - Australia (54)
- University of Washington (2)
Resumo:
A new information-theoretic approach is presented for finding the pose of an object in an image. The technique does not require information about the surface properties of the object, besides its shape, and is robust with respect to variations of illumination. In our derivation, few assumptions are made about the nature of the imaging process. As a result the algorithms are quite general and can foreseeably be used in a wide variety of imaging situations. Experiments are presented that demonstrate the approach registering magnetic resonance (MR) images with computed tomography (CT) images, aligning a complex 3D object model to real scenes including clutter and occlusion, tracking a human head in a video sequence and aligning a view-based 2D object model to real images. The method is based on a formulation of the mutual information between the model and the image called EMMA. As applied here the technique is intensity-based, rather than feature-based. It works well in domains where edge or gradient-magnitude based methods have difficulty, yet it is more robust than traditional correlation. Additionally, it has an efficient implementation that is based on stochastic approximation. Finally, we will describe a number of additional real-world applications that can be solved efficiently and reliably using EMMA. EMMA can be used in machine learning to find maximally informative projections of high-dimensional data. EMMA can also be used to detect and correct corruption in magnetic resonance images (MRI).