3 resultados para METHODOLOGICAL CONTEXT

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

While navigating in an environment, a vision system has to be able to recognize where it is and what the main objects in the scene are. In this paper we present a context-based vision system for place and object recognition. The goal is to identify familiar locations (e.g., office 610, conference room 941, Main Street), to categorize new environments (office, corridor, street) and to use that information to provide contextual priors for object recognition (e.g., table, chair, car, computer). We present a low-dimensional global image representation that provides relevant information for place recognition and categorization, and how such contextual information introduces strong priors that simplify object recognition. We have trained the system to recognize over 60 locations (indoors and outdoors) and to suggest the presence and locations of more than 20 different object types. The algorithm has been integrated into a mobile system that provides real-time feedback to the user.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Location is a primary cue in many context-aware computing systems, and is often represented as a global coordinate, room number, or Euclidean distance various landmarks. A user?s concept of location, however, is often defined in terms of regions in which common activities occur. We show how to partition a space into such regions based on patterns of observed user location and motion. These regions, which we call activity zones, represent regions of similar user activity, and can be used to trigger application actions, retrieve information based on previous context, and present information to users. We suggest that context-aware applications can benefit from a location representation learned from observing users. We describe an implementation of our system and present two example applications whose behavior is controlled by users? entry, exit, and presence in the zones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expert systems are too slow. This work attacks that problem by speeding up a useful system component that remembers facts and tracks down simple consequences. The redesigned component can assimilate new facts more quickly because it uses a compact, grammar-based internal representation to deal with whole classes of equivalent expressions at once. It can support faster hypothetical reasoning because it remembers the consequences of several assumption sets at once. The new design is targeted for situations in which many of the stored facts are equalities. The deductive machinery considered here supplements stored premises with simple new conclusions. The stored premises include permanently asserted facts and temporarily adopted assumptions. The new conclusions are derived by substituting equals for equals and using the properties of the logical connectives AND, Or, and NOT. The deductive system provides supporting premises for its derived conclusions. Reasoning that involves quantifiers is beyond the scope of its limited and automatic operation. The expert system of which the reasoning system is a component is expected to be responsible for overall control of reasoning.