2 resultados para MATCHINGS
em Massachusetts Institute of Technology
Resumo:
A unique matching is a stated objective of most computational theories of stereo vision. This report describes situations where humans perceive a small number of surfaces carried by non-unique matching of random dot patterns, although a unique solution exists and is observed unambiguously in the perception of isolated features. We find both cases where non-unique matchings compete and suppress each other and cases where they are all perceived as transparent surfaces. The circumstances under which each behavior occurs are discussed and a possible explanation is sketched. It appears that matching reduces many false targets to a few, but may still yield multiple solutions in some cases through a (possibly different) process of surface interpolation.
Resumo:
Techniques, suitable for parallel implementation, for robust 2D model-based object recognition in the presence of sensor error are studied. Models and scene data are represented as local geometric features and robust hypothesis of feature matchings and transformations is considered. Bounds on the error in the image feature geometry are assumed constraining possible matchings and transformations. Transformation sampling is introduced as a simple, robust, polynomial-time, and highly parallel method of searching the space of transformations to hypothesize feature matchings. Key to the approach is that error in image feature measurement is explicitly accounted for. A Connection Machine implementation and experiments on real images are presented.