2 resultados para Local Field Potentials

em Massachusetts Institute of Technology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integration of inputs by cortical neurons provides the basis for the complex information processing performed in the cerebral cortex. Here, we propose a new analytic framework for understanding integration within cortical neuronal receptive fields. Based on the synaptic organization of cortex, we argue that neuronal integration is a systems--level process better studied in terms of local cortical circuitry than at the level of single neurons, and we present a method for constructing self-contained modules which capture (nonlinear) local circuit interactions. In this framework, receptive field elements naturally have dual (rather than the traditional unitary influence since they drive both excitatory and inhibitory cortical neurons. This vector-based analysis, in contrast to scalarsapproaches, greatly simplifies integration by permitting linear summation of inputs from both "classical" and "extraclassical" receptive field regions. We illustrate this by explaining two complex visual cortical phenomena, which are incompatible with scalar notions of neuronal integration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fundamental question in visual neuroscience is how to represent image structure. The most common representational schemes rely on differential operators that compare adjacent image regions. While well-suited to encoding local relationships, such operators have significant drawbacks. Specifically, each filter's span is confounded with the size of its sub-fields, making it difficult to compare small regions across large distances. We find that such long-distance comparisons are more tolerant to common image transformations than purely local ones, suggesting they may provide a useful vocabulary for image encoding. . We introduce the "Dissociated Dipole," or "Sticks" operator, for encoding non-local image relationships. This operator de-couples filter span from sub-field size, enabling parametric movement between edge and region-based representation modes. We report on the perceptual plausibility of the operator, and the computational advantages of non-local encoding. Our results suggest that non-local encoding may be an effective scheme for representing image structure.