2 resultados para Linguagem de programação visual. Ambiente de programação para iniciantes. Educação. Programação de jogos. Programaçãopor usuário final. Interação humano-computador. EUPAT for WoW. world of warcraft
em Massachusetts Institute of Technology
Resumo:
The development of increasingly sophisticated and powerful computers in the last few decades has frequently stimulated comparisons between them and the human brain. Such comparisons will become more earnest as computers are applied more and more to tasks formerly associated with essentially human activities and capabilities. The expectation of a coming generation of "intelligent" computers and robots with sensory, motor and even "intellectual" skills comparable in quality to (and quantitatively surpassing) our own is becoming more widespread and is, I believe, leading to a new and potentially productive analytical science of "information processing". In no field has this new approach been so precisely formulated and so thoroughly exemplified as in the field of vision. As the dominant sensory modality of man, vision is one of the major keys to our mastery of the environment, to our understanding and control of the objects which surround us. If we wish to created robots capable of performing complex manipulative tasks in a changing environment, we must surely endow them with (among other things) adequate visual powers. How can we set about designing such flexible and adaptive robots? In designing them, can we make use of our rapidly growing knowledge of the human brain, and if so, how at the same time, can our experiences in designing artificial vision systems help us to understand how the brain analyzes visual information?
Resumo:
Object recognition in the visual cortex is based on a hierarchical architecture, in which specialized brain regions along the ventral pathway extract object features of increasing levels of complexity, accompanied by greater invariance in stimulus size, position, and orientation. Recent theoretical studies postulate a non-linear pooling function, such as the maximum (MAX) operation could be fundamental in achieving such invariance. In this paper, we are concerned with neurally plausible mechanisms that may be involved in realizing the MAX operation. Four canonical circuits are proposed, each based on neural mechanisms that have been previously discussed in the context of cortical processing. Through simulations and mathematical analysis, we examine the relative performance and robustness of these mechanisms. We derive experimentally verifiable predictions for each circuit and discuss their respective physiological considerations.