3 resultados para LiDAR, sequenze pseudocasuali, Linear-feedback schist register, cross correlation
em Massachusetts Institute of Technology
Resumo:
We describe the automatic synthesis of a global nonlinear controller for stabilizing a magnetic levitation system. The synthesized control system can stabilize the maglev vehicle with large initial displacements from an equilibrium, and possesses a much larger operating region than the classical linear feedback design for the same system. The controller is automatically synthesized by a suite of computational tools. This work demonstrates that the difficult control synthesis task can be automated, using programs that actively exploit knowledge of nonlinear dynamics and state space and combine powerful numerical and symbolic computations with spatial-reasoning techniques.
Resumo:
Template matching by means of cross-correlation is common practice in pattern recognition. However, its sensitivity to deformations of the pattern and the broad and unsharp peaks it produces are significant drawbacks. This paper reviews some results on how these shortcomings can be removed. Several techniques (Matched Spatial Filters, Synthetic Discriminant Functions, Principal Components Projections and Reconstruction Residuals) are reviewed and compared on a common task: locating eyes in a database of faces. New variants are also proposed and compared: least squares Discriminant Functions and the combined use of projections on eigenfunctions and the corresponding reconstruction residuals. Finally, approximation networks are introduced in an attempt to improve filter design by the introduction of nonlinearity.
Resumo:
Linear graph reduction is a simple computational model in which the cost of naming things is explicitly represented. The key idea is the notion of "linearity". A name is linear if it is only used once, so with linear naming you cannot create more than one outstanding reference to an entity. As a result, linear naming is cheap to support and easy to reason about. Programs can be translated into the linear graph reduction model such that linear names in the program are implemented directly as linear names in the model. Nonlinear names are supported by constructing them out of linear names. The translation thus exposes those places where the program uses names in expensive, nonlinear ways. Two applications demonstrate the utility of using linear graph reduction: First, in the area of distributed computing, linear naming makes it easy to support cheap cross-network references and highly portable data structures, Linear naming also facilitates demand driven migration of tasks and data around the network without requiring explicit guidance from the programmer. Second, linear graph reduction reveals a new characterization of the phenomenon of state. Systems in which state appears are those which depend on certain -global- system properties. State is not a localizable phenomenon, which suggests that our usual object oriented metaphor for state is flawed.