10 resultados para Learning Problems
em Massachusetts Institute of Technology
Resumo:
There are many learning problems for which the examples given by the teacher are ambiguously labeled. In this thesis, we will examine one framework of learning from ambiguous examples known as Multiple-Instance learning. Each example is a bag, consisting of any number of instances. A bag is labeled negative if all instances in it are negative. A bag is labeled positive if at least one instance in it is positive. Because the instances themselves are not labeled, each positive bag is an ambiguous example. We would like to learn a concept which will correctly classify unseen bags. We have developed a measure called Diverse Density and algorithms for learning from multiple-instance examples. We have applied these techniques to problems in drug design, stock prediction, and image database retrieval. These serve as examples of how to translate the ambiguity in the application domain into bags, as well as successful examples of applying Diverse Density techniques.
Resumo:
Sigmoid type belief networks, a class of probabilistic neural networks, provide a natural framework for compactly representing probabilistic information in a variety of unsupervised and supervised learning problems. Often the parameters used in these networks need to be learned from examples. Unfortunately, estimating the parameters via exact probabilistic calculations (i.e, the EM-algorithm) is intractable even for networks with fairly small numbers of hidden units. We propose to avoid the infeasibility of the E step by bounding likelihoods instead of computing them exactly. We introduce extended and complementary representations for these networks and show that the estimation of the network parameters can be made fast (reduced to quadratic optimization) by performing the estimation in either of the alternative domains. The complementary networks can be used for continuous density estimation as well.
Resumo:
We discuss a formulation for active example selection for function learning problems. This formulation is obtained by adapting Fedorov's optimal experiment design to the learning problem. We specifically show how to analytically derive example selection algorithms for certain well defined function classes. We then explore the behavior and sample complexity of such active learning algorithms. Finally, we view object detection as a special case of function learning and show how our formulation reduces to a useful heuristic to choose examples to reduce the generalization error.
Resumo:
Learning an input-output mapping from a set of examples, of the type that many neural networks have been constructed to perform, can be regarded as synthesizing an approximation of a multi-dimensional function, that is solving the problem of hypersurface reconstruction. From this point of view, this form of learning is closely related to classical approximation techniques, such as generalized splines and regularization theory. This paper considers the problems of an exact representation and, in more detail, of the approximation of linear and nolinear mappings in terms of simpler functions of fewer variables. Kolmogorov's theorem concerning the representation of functions of several variables in terms of functions of one variable turns out to be almost irrelevant in the context of networks for learning. We develop a theoretical framework for approximation based on regularization techniques that leads to a class of three-layer networks that we call Generalized Radial Basis Functions (GRBF), since they are mathematically related to the well-known Radial Basis Functions, mainly used for strict interpolation tasks. GRBF networks are not only equivalent to generalized splines, but are also closely related to pattern recognition methods such as Parzen windows and potential functions and to several neural network algorithms, such as Kanerva's associative memory, backpropagation and Kohonen's topology preserving map. They also have an interesting interpretation in terms of prototypes that are synthesized and optimally combined during the learning stage. The paper introduces several extensions and applications of the technique and discusses intriguing analogies with neurobiological data.
Resumo:
Trees are a common way of organizing large amounts of information by placing items with similar characteristics near one another in the tree. We introduce a classification problem where a given tree structure gives us information on the best way to label nearby elements. We suggest there are many practical problems that fall under this domain. We propose a way to map the classification problem onto a standard Bayesian inference problem. We also give a fast, specialized inference algorithm that incrementally updates relevant probabilities. We apply this algorithm to web-classification problems and show that our algorithm empirically works well.
Resumo:
This thesis presents a learning based approach for detecting classes of objects and patterns with variable image appearance but highly predictable image boundaries. It consists of two parts. In part one, we introduce our object and pattern detection approach using a concrete human face detection example. The approach first builds a distribution-based model of the target pattern class in an appropriate feature space to describe the target's variable image appearance. It then learns from examples a similarity measure for matching new patterns against the distribution-based target model. The approach makes few assumptions about the target pattern class and should therefore be fairly general, as long as the target class has predictable image boundaries. Because our object and pattern detection approach is very much learning-based, how well a system eventually performs depends heavily on the quality of training examples it receives. The second part of this thesis looks at how one can select high quality examples for function approximation learning tasks. We propose an {em active learning} formulation for function approximation, and show for three specific approximation function classes, that the active example selection strategy learns its target with fewer data samples than random sampling. We then simplify the original active learning formulation, and show how it leads to a tractable example selection paradigm, suitable for use in many object and pattern detection problems.
Resumo:
This thesis explores ways to augment a model-based diagnostic program with a learning component, so that it speeds up as it solves problems. Several learning components are proposed, each exploiting a different kind of similarity between diagnostic examples. Through analysis and experiments, we explore the effect each learning component has on the performance of a model-based diagnostic program. We also analyze more abstractly the performance effects of Explanation-Based Generalization, a technology that is used in several of the proposed learning components.
Resumo:
A model is presented that deals with problems of motor control, motor learning, and sensorimotor integration. The equations of motion for a limb are parameterized and used in conjunction with a quantized, multi-dimensional memory organized by state variables. Descriptions of desired trajectories are translated into motor commands which will replicate the specified motions. The initial specification of a movement is free of information regarding the mechanics of the effector system. Learning occurs without the use of error correction when practice data are collected and analyzed.
Resumo:
There has been recent interest in using temporal difference learning methods to attack problems of prediction and control. While these algorithms have been brought to bear on many problems, they remain poorly understood. It is the purpose of this thesis to further explore these algorithms, presenting a framework for viewing them and raising a number of practical issues and exploring those issues in the context of several case studies. This includes applying the TD(lambda) algorithm to: 1) learning to play tic-tac-toe from the outcome of self-play and of play against a perfectly-playing opponent and 2) learning simple one-dimensional segmentation tasks.
Resumo:
This thesis attempts to quantify the amount of information needed to learn certain tasks. The tasks chosen vary from learning functions in a Sobolev space using radial basis function networks to learning grammars in the principles and parameters framework of modern linguistic theory. These problems are analyzed from the perspective of computational learning theory and certain unifying perspectives emerge.