4 resultados para Learning Environment Design
em Massachusetts Institute of Technology
Resumo:
A distributed method for mobile robot navigation, spatial learning, and path planning is presented. It is implemented on a sonar-based physical robot, Toto, consisting of three competence layers: 1) Low-level navigation: a collection of reflex-like rules resulting in emergent boundary-tracing. 2) Landmark detection: dynamically extracts landmarks from the robot's motion. 3) Map learning: constructs a distributed map of landmarks. The parallel implementation allows for localization in constant time. Spreading of activation computes both topological and physical shortest paths in linear time. The main issues addressed are: distributed, procedural, and qualitative representation and computation, emergent behaviors, dynamic landmarks, minimized communication.
Resumo:
One objective of artificial intelligence is to model the behavior of an intelligent agent interacting with its environment. The environment's transformations can be modeled as a Markov chain, whose state is partially observable to the agent and affected by its actions; such processes are known as partially observable Markov decision processes (POMDPs). While the environment's dynamics are assumed to obey certain rules, the agent does not know them and must learn. In this dissertation we focus on the agent's adaptation as captured by the reinforcement learning framework. This means learning a policy---a mapping of observations into actions---based on feedback from the environment. The learning can be viewed as browsing a set of policies while evaluating them by trial through interaction with the environment. The set of policies is constrained by the architecture of the agent's controller. POMDPs require a controller to have a memory. We investigate controllers with memory, including controllers with external memory, finite state controllers and distributed controllers for multi-agent systems. For these various controllers we work out the details of the algorithms which learn by ascending the gradient of expected cumulative reinforcement. Building on statistical learning theory and experiment design theory, a policy evaluation algorithm is developed for the case of experience re-use. We address the question of sufficient experience for uniform convergence of policy evaluation and obtain sample complexity bounds for various estimators. Finally, we demonstrate the performance of the proposed algorithms on several domains, the most complex of which is simulated adaptive packet routing in a telecommunication network.
Resumo:
Sketches are commonly used in the early stages of design. Our previous system allows users to sketch mechanical systems that the computer interprets. However, some parts of the mechanical system might be too hard or too complicated to express in the sketch. Adding speech recognition to create a multimodal system would move us toward our goal of creating a more natural user interface. This thesis examines the relationship between the verbal and sketch input, particularly how to segment and align the two inputs. Toward this end, subjects were recorded while they sketched and talked. These recordings were transcribed, and a set of rules to perform segmentation and alignment was created. These rules represent the knowledge that the computer needs to perform segmentation and alignment. The rules successfully interpreted the 24 data sets that they were given.
Resumo:
The technologies and methodologies of assembly design and evaluation in the early design stage are highly significant to product development. This paper looks at a promising technology to mix real components (e.g. physical prototypes, assembly tools, machines, etc.) with virtual components to create an Augmented Reality (AR) interface for assembly process evaluation. The goal of this paper is to clarify the methodologies and enabling technologies of how to establish an AR assembly simulation and evaluation environment. The architecture of an AR assembly system is proposed and the important functional modules including AR environment set-up, design for assembly (DFA) analysis and AR assembly sequence planning in an AR environment are discussed in detail.