3 resultados para Latour, Bruno
em Massachusetts Institute of Technology
Resumo:
Learning an input-output mapping from a set of examples can be regarded as synthesizing an approximation of a multi-dimensional function. From this point of view, this form of learning is closely related to regularization theory. In this note, we extend the theory by introducing ways of dealing with two aspects of learning: learning in the presence of unreliable examples and learning from positive and negative examples. The first extension corresponds to dealing with outliers among the sparse data. The second one corresponds to exploiting information about points or regions in the range of the function that are forbidden.
Resumo:
The problem of minimizing a multivariate function is recurrent in many disciplines as Physics, Mathematics, Engeneering and, of course, Computer Science. In this paper we describe a simple nondeterministic algorithm which is based on the idea of adaptive noise, and that proved to be particularly effective in the minimization of a class of multivariate, continuous valued, smooth functions, associated with some recent extension of regularization theory by Poggio and Girosi (1990). Results obtained by using this method and a more traditional gradient descent technique are also compared.
Resumo:
In previous work (Olshausen & Field 1996), an algorithm was described for learning linear sparse codes which, when trained on natural images, produces a set of basis functions that are spatially localized, oriented, and bandpass (i.e., wavelet-like). This note shows how the algorithm may be interpreted within a maximum-likelihood framework. Several useful insights emerge from this connection: it makes explicit the relation to statistical independence (i.e., factorial coding), it shows a formal relationship to the algorithm of Bell and Sejnowski (1995), and it suggests how to adapt parameters that were previously fixed.