4 resultados para Large amounts

em Massachusetts Institute of Technology


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe an approach to parallel compilation that seeks to harness the vast amount of fine-grain parallelism that is exposed through partial evaluation of numerically-intensive scientific programs. We have constructed a compiler for the Supercomputer Toolkit parallel processor that uses partial evaluation to break down data abstractions and program structure, producing huge basic blocks that contain large amounts of fine-grain parallelism. We show that this fine-grain prarllelism can be effectively utilized even on coarse-grain parallel architectures by selectively grouping operations together so as to adjust the parallelism grain-size to match the inter-processor communication capabilities of the target architecture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prompted by claims that garbage collection can outperform stack allocation when sufficient physical memory is available, we present a careful analysis and set of cross-architecture measurements comparing these two approaches for the implementation of continuation (procedure call) frames. When the frames are allocated on a heap they require additional space, increase the amount of data transferred between memory and registers, and, on current architectures, require more instructions. We find that stack allocation of continuation frames outperforms heap allocation in some cases by almost a factor of three. Thus, stacks remain an important implementation technique for procedure calls, even in the presence of an efficient, compacting garbage collector and large amounts of memory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trees are a common way of organizing large amounts of information by placing items with similar characteristics near one another in the tree. We introduce a classification problem where a given tree structure gives us information on the best way to label nearby elements. We suggest there are many practical problems that fall under this domain. We propose a way to map the classification problem onto a standard Bayesian inference problem. We also give a fast, specialized inference algorithm that incrementally updates relevant probabilities. We apply this algorithm to web-classification problems and show that our algorithm empirically works well.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modeling and simulation permeate all areas of business, science and engineering. With the increase in the scale and complexity of simulations, large amounts of computational resources are required, and collaborative model development is needed, as multiple parties could be involved in the development process. The Grid provides a platform for coordinated resource sharing and application development and execution. In this paper, we survey existing technologies in modeling and simulation, and we focus on interoperability and composability of simulation components for both simulation development and execution. We also present our recent work on an HLA-based simulation framework on the Grid, and discuss the issues to achieve composability.