2 resultados para Lagrangian
em Massachusetts Institute of Technology
Resumo:
A closed-form solution formula for the kinematic control of manipulators with redundancy is derived, using the Lagrangian multiplier method. Differential relationship equivalent to the Resolved Motion Method has been also derived. The proposed method is proved to provide with the exact equilibrium state for the Resolved Motion Method. This exactness in the proposed method fixes the repeatability problem in the Resolved Motion Method, and establishes a fixed transformation from workspace to the joint space. Also the method, owing to the exactness, is demonstrated to give more accurate trajectories than the Resolved Motion Method. In addition, a new performance measure for redundancy control has been developed. This measure, if used with kinematic control methods, helps achieve dexterous movements including singularity avoidance. Compared to other measures such as the manipulability measure and the condition number, this measure tends to give superior performances in terms of preserving the repeatability property and providing with smoother joint velocity trajectories. Using the fixed transformation property, Taylor's Bounded Deviation Paths Algorithm has been extended to the redundant manipulators.
Resumo:
We present an immersed interface method for the incompressible Navier Stokes equations capable of handling rigid immersed boundaries. The immersed boundary is represented by a set of Lagrangian control points. In order to guarantee that the no-slip condition on the boundary is satisfied, singular forces are applied on the fluid at the immersed boundary. The forces are related to the jumps in pressure and the jumps in the derivatives of both pressure and velocity, and are interpolated using cubic splines. The strength of singular forces is determined by solving a small system of equations at each time step. The Navier-Stokes equations are discretized on a staggered Cartesian grid by a second order accurate projection method for pressure and velocity.