1 resultado para LEAD 310
em Massachusetts Institute of Technology
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- Aquatic Commons (3)
- ARCA - Repositório Institucional da FIOCRUZ (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archive of European Integration (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (15)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (18)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Bibloteca do Senado Federal do Brasil (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (75)
- Boston University Digital Common (3)
- Brock University, Canada (3)
- CaltechTHESIS (5)
- Cambridge University Engineering Department Publications Database (20)
- CentAUR: Central Archive University of Reading - UK (30)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (61)
- Cochin University of Science & Technology (CUSAT), India (10)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (3)
- CUNY Academic Works (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (9)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (8)
- DigitalCommons@University of Nebraska - Lincoln (8)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (2)
- Greenwich Academic Literature Archive - UK (23)
- Helda - Digital Repository of University of Helsinki (8)
- Indian Institute of Science - Bangalore - Índia (126)
- Infoteca EMBRAPA (2)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico do Porto, Portugal (3)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (6)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- Publishing Network for Geoscientific & Environmental Data (216)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (65)
- Queensland University of Technology - ePrints Archive (43)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (123)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (2)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (1)
- University of Connecticut - USA (6)
Resumo:
Most logistics network design models assume exogenous customer demand that is independent of the service time or level. This paper examines the benefits of segmenting demand according to lead-time sensitivity of customers. To capture lead-time sensitivity in the network design model, we use a facility grouping method to ensure that the different demand classes are satisfied on time. In addition, we perform a series of computational experiments to develop a set of managerial insights for the network design decision making process.