2 resultados para Kahn, Edgar
em Massachusetts Institute of Technology
Resumo:
This report describes a computer system that creates simple computer animation in response to high-level, vague, and incomplete descriptions of films. It makes its films by collecting and evaluating suggestions from several different bodies of knowledge. The order in which it makes its choices is influenced by the focus of the film. Difficult choices are postponed to be resumed when more of the film has been determined. The system was implemented in an object-oriented language based upon computational entities called "actors". The goal behind the construction of the system is that, whenever faced with a choice, it should sensibly choose between alternatives based upon the description of the film and as much general knowledge as possible. The system is presented as a computational model of creativity and aesthetics.
Resumo:
The Support Vector Machine (SVM) is a new and very promising classification technique developed by Vapnik and his group at AT&T Bell Labs. This new learning algorithm can be seen as an alternative training technique for Polynomial, Radial Basis Function and Multi-Layer Perceptron classifiers. An interesting property of this approach is that it is an approximate implementation of the Structural Risk Minimization (SRM) induction principle. The derivation of Support Vector Machines, its relationship with SRM, and its geometrical insight, are discussed in this paper. Training a SVM is equivalent to solve a quadratic programming problem with linear and box constraints in a number of variables equal to the number of data points. When the number of data points exceeds few thousands the problem is very challenging, because the quadratic form is completely dense, so the memory needed to store the problem grows with the square of the number of data points. Therefore, training problems arising in some real applications with large data sets are impossible to load into memory, and cannot be solved using standard non-linear constrained optimization algorithms. We present a decomposition algorithm that can be used to train SVM's over large data sets. The main idea behind the decomposition is the iterative solution of sub-problems and the evaluation of, and also establish the stopping criteria for the algorithm. We present previous approaches, as well as results and important details of our implementation of the algorithm using a second-order variant of the Reduced Gradient Method as the solver of the sub-problems. As an application of SVM's, we present preliminary results we obtained applying SVM to the problem of detecting frontal human faces in real images.