4 resultados para Jonathan Livernois

em Massachusetts Institute of Technology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This is the manual for version 1.1 of Iterate, a powerful iteration macro for Common Lisp. Iterate is similar to Loop but provides numerous additional features, is well integrated with Lisp, and is extensible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data and procedures and the values they amass, Higher-order functions to combine and mix and match, Objects with their local state, the message they pass, A property, a package, the control of point for a catch- In the Lambda Order they are all first-class. One thing to name them all, one things to define them, one thing to place them in environments and bind them, in the Lambda Order they are all first-class. Keywords: Scheme, Lisp, functional programming, computer languages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report describes MM, a computer program that can model a variety of mechanical and fluid systems. Given a system's structure and qualitative behavior, MM searches for models using an energy-based modeling framework. MM uses general facts about physical systems to relate behavioral and model properties. These facts enable a more focussed search for models than would be obtained by mere comparison of desired and predicted behaviors. When these facts do not apply, MM uses behavior-constrained qualitative simulation to verify candidate models efficiently. MM can also design experiments to distinguish among multiple candidate models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the results of an implemented system for learning structural prototypes from grey-scale images. We show how to divide an object into subparts and how to encode the properties of these subparts and the relations between them. We discuss the importance of hierarchy and grouping in representing objects and show how a notion of visual similarities can be embedded in the description language. Finally we exhibit a learning algorithm that forms class models from the descriptions produced and uses these models to recognize new members of the class.