5 resultados para Jeffrey Kroessler
em Massachusetts Institute of Technology
Resumo:
A fundamental understanding of the information carrying capacity of optical channels requires the signal and physical channel to be modeled quantum mechanically. This thesis considers the problems of distributing multi-party quantum entanglement to distant users in a quantum communication system and determining the ability of quantum optical channels to reliably transmit information. A recent proposal for a quantum communication architecture that realizes long-distance, high-fidelity qubit teleportation is reviewed. Previous work on this communication architecture is extended in two primary ways. First, models are developed for assessing the effects of amplitude, phase, and frequency errors in the entanglement source of polarization-entangled photons, as well as fiber loss and imperfect polarization restoration, on the throughput and fidelity of the system. Second, an error model is derived for an extension of this communication architecture that allows for the production and storage of three-party entangled Greenberger-Horne-Zeilinger states. A performance analysis of the quantum communication architecture in qubit teleportation and quantum secret sharing communication protocols is presented. Recent work on determining the channel capacity of optical channels is extended in several ways. Classical capacity is derived for a class of Gaussian Bosonic channels representing the quantum version of classical colored Gaussian-noise channels. The proof is strongly mo- tivated by the standard technique of whitening Gaussian noise used in classical information theory. Minimum output entropy problems related to these channel capacity derivations are also studied. These single-user Bosonic capacity results are extended to a multi-user scenario by deriving capacity regions for single-mode and wideband coherent-state multiple access channels. An even larger capacity region is obtained when the transmitters use non- classical Gaussian states, and an outer bound on the ultimate capacity region is presented
Resumo:
This thesis proposes a computational model of how children may come to learn the meanings of words in their native language. The proposed model is divided into two separate components. One component produces semantic descriptions of visually observed events while the other correlates those descriptions with co-occurring descriptions of those events in natural language. The first part of this thesis describes three implementations of the correlation process whereby representations of the meanings of whole utterances can be decomposed into fragments assigned as representations of the meanings of individual words. The second part of this thesis describes an implemented computer program that recognizes the occurrence of simple spatial motion events in simulated video input.
Resumo:
This research is concerned with designing representations for analytical reasoning problems (of the sort found on the GRE and LSAT). These problems test the ability to draw logical conclusions. A computer program was developed that takes as input a straightforward predicate calculus translation of a problem, requests additional information if necessary, decides what to represent and how, designs representations capturing the constraints of the problem, and creates and executes a LISP program that uses those representations to produce a solution. Even though these problems are typically difficult for theorem provers to solve, the LISP program that uses the designed representations is very efficient.
Resumo:
Automated assembly of mechanical devices is studies by researching methods of operating assembly equipment in a variable manner; that is, systems which may be configured to perform many different assembly operations are studied. The general parts assembly operation involves the removal of alignment errors within some tolerance and without damaging the parts. Two methods for eliminating alignment errors are discussed: a priori suppression and measurement and removal. Both methods are studied with the more novel measurement and removal technique being studied in greater detail. During the study of this technique, a fast and accurate six degree-of-freedom position sensor based on a light-stripe vision technique was developed. Specifications for the sensor were derived from an assembly-system error analysis. Studies on extracting accurate information from the sensor by optimally reducing redundant information, filtering quantization noise, and careful calibration procedures were performed. Prototype assembly systems for both error elimination techniques were implemented and used to assemble several products. The assembly system based on the a priori suppression technique uses a number of mechanical assembly tools and software systems which extend the capabilities of industrial robots. The need for the tools was determined through an assembly task analysis of several consumer and automotive products. The assembly system based on the measurement and removal technique used the six degree-of-freedom position sensor to measure part misalignments. Robot commands for aligning the parts were automatically calculated based on the sensor data and executed.
Resumo:
IntraCavity Laser Absorption Spectroscopy (ICLAS) is a high-resolution, high sensitivity spectroscopic method capable of measuring line positions, linewidths, lineshapes, and absolute line intensities with a sensitivity that far exceeds that of a traditional multiple pass absorption cell or Fourier Transform spectrometer. From the fundamental knowledge obtained through these measurements, information about the underlying spectroscopy, dynamics, and kinetics of the species interrogated can be derived. The construction of an ICLA Spectrometer will be detailed, and the measurements utilizing ICLAS will be discussed, as well as the theory of operation and modifications of the experimental apparatus. Results include: i) Line intensities and collision-broadening coefficients of the A band of oxygen and previously unobserved, high J, rotational transitions of the A band, hot-band transitions, and transitions of isotopically substituted species. ii) High-resolution (0.013 cm-1) spectra of the second overtone of the OH stretch of trans-nitrous acid recorded between 10,230 and 10,350 cm-1. The spectra were analyzed to yield a complete set of rotational parameters and an absolute band intensity, and two groups of anharmonic perturbations were observed and analyzed. These findings are discussed in the context of the contribution of overtone-mediated processes to OH radical production in the lower atmosphere.