4 resultados para Japanese language -- Translating into English.
em Massachusetts Institute of Technology
Resumo:
This paper describes a natural language system START. The system analyzes English text and automatically transforms it into an appropriate representation, the knowledge base, which incorporates the information found in the text. The user gains access to information stored in the knowledge base by querying it in English. The system analyzes the query and decides through a matching process what information in the knowledge base is relevant to the question. Then it retrieves this information and formulates its response also in English.
Resumo:
The STUDENT problem solving system, programmed in LISP, accepts as input a comfortable but restricted subset of English which can express a wide variety of algebra story problems. STUDENT finds the solution to a large class of these problems. STUDENT can utilize a store of global information not specific to any one problem, and may make assumptions about the interpretation of ambiguities in the wording of the problem being solved. If it uses such information or makes any assumptions, STUDENT communicates this fact to the user. The thesis includes a summary of other English language questions-answering systems. All these systems, and STUDENT, are evaluated according to four standard criteria. The linguistic analysis in STUDENT is a first approximation to the analytic portion of a semantic theory of discourse outlined in the thesis. STUDENT finds the set of kernel sentences which are the base of the input discourse, and transforms this sequence of kernel sentences into a set of simultaneous equations which form the semantic base of the STUDENT system. STUDENT then tries to solve this set of equations for the values of requested unknowns. If it is successful it gives the answers in English. If not, STUDENT asks the user for more information, and indicates the nature of the desired information. The STUDENT system is a first step toward natural language communication with computers. Further work on the semantic theory proposed should result in much more sophisticated systems.
Resumo:
How can one represent the meaning of English sentences in a formal logical notation such that the translation of English into this logical form is simple and general? This report answers this question for a particular kind of meaning, namely quantifier scope, and for a particular part of the translation, namely the syntactic influence on the translation. Rules are presented which predict, for example, that the sentence: Everyone in this room speaks at least two languages. has the quantifier scope AE in standard predicate calculus, while the sentence: At lease two languages are spoken by everyone in this room. has the quantifier scope EA. Three different logical forms are presented, and their translation rules are examined. One of the logical forms is predicate calculus. The translation rules for it were developed by Robert May (May 19 77). The other two logical forms are Skolem form and a simple computer programming language. The translation rules for these two logical forms are new. All three sets of translation rules are shown to be general, in the sense that the same rules express the constraints that syntax imposes on certain other linguistic phenomena. For example, the rules that constrain the translation into Skolem form are shown to constrain definite np anaphora as well. A large body of carefully collected data is presented, and used to assess the empirical accuracy of each of the theories. None of the three theories is vastly superior to the others. However, the report concludes by suggesting that a combination of the two newer theories would have the greatest generality and the highest empirical accuracy.
Resumo:
This paper describes a system for the computer understanding of English. The system answers questions, executes commands, and accepts information in normal English dialog. It uses semantic information and context to understand discourse and to disambiguate sentences. It combines a complete syntactic analysis of each sentence with a "heuristic understander" which uses different kinds of information about a sentence, other parts of the discourse, and general information about the world in deciding what the sentence means. It is based on the belief that a computer cannot deal reasonably with language unless it can "understand" the subject it is discussing. The program is given a detailed model of the knowledge needed by a simple robot having only a hand and an eye. We can give it instructions to manipulate toy objects, interrogate it about the scene, and give it information it will use in deduction. In addition to knowing the properties of toy objects, the program has a simple model of its own mentality. It can remember and discuss its plans and actions as well as carry them out. It enters into a dialog with a person, responding to English sentences with actions and English replies, and asking for clarification when its heuristic programs cannot understand a sentence through use of context and physical knowledge.