5 resultados para Jaime Sabines
em Massachusetts Institute of Technology
Resumo:
We report on a study of how people look for information within email, files, and the Web. When locating a document or searching for a specific answer, people relied on their contextual knowledge of their information target to help them find it, often associating the target with a specific document. They appeared to prefer to use this contextual information as a guide in navigating locally in small steps to the desired document rather than directly jumping to their target. We found this behavior was especially true for people with unstructured information organization. We discuss the implications of our findings for the design of personal information management tools.
Resumo:
This paper investigates how people return to information in a dynamic information environment. For example, a person might want to return to Web content via a link encountered earlier on a Web page, only to learn that the link has since been removed. Changes can benefit users by providing new information, but they hinder returning to previously viewed information. The observational study presented here analyzed instances, collected via a Web search, where people expressed difficulty re-finding information because of changes to the information or its environment. A number of interesting observations arose from this analysis, including that the path originally taken to get to the information target appeared important in its re-retrieval, whereas, surprisingly, the temporal aspects of when the information was seen before were not. While people expressed frustration when problems arose, an explanation of why the change had occurred was often sufficient to allay that frustration, even in the absence of a solution. The implications of these observations for systems that support re-finding in dynamic environments are discussed.
Resumo:
The discontinuities in the solutions of systems of conservation laws are widely considered as one of the difficulties in numerical simulation. A numerical method is proposed for solving these partial differential equations with discontinuities in the solution. The method is able to track these sharp discontinuities or interfaces while still fully maintain the conservation property. The motion of the front is obtained by solving a Riemann problem based on the state values at its both sides which are reconstructed by using weighted essentially non oscillatory (WENO) scheme. The propagation of the front is coupled with the evaluation of "dynamic" numerical fluxes. Some numerical tests in 1D and preliminary results in 2D are presented.
Resumo:
We present an immersed interface method for the incompressible Navier Stokes equations capable of handling rigid immersed boundaries. The immersed boundary is represented by a set of Lagrangian control points. In order to guarantee that the no-slip condition on the boundary is satisfied, singular forces are applied on the fluid at the immersed boundary. The forces are related to the jumps in pressure and the jumps in the derivatives of both pressure and velocity, and are interpolated using cubic splines. The strength of singular forces is determined by solving a small system of equations at each time step. The Navier-Stokes equations are discretized on a staggered Cartesian grid by a second order accurate projection method for pressure and velocity.
Resumo:
In this paper a precorrected FFT-Fast Multipole Tree (pFFT-FMT) method for solving the potential flow around arbitrary three dimensional bodies is presented. The method takes advantage of the efficiency of the pFFT and FMT algorithms to facilitate more demanding computations such as automatic wake generation and hands-off steady and unsteady aerodynamic simulations. The velocity potential on the body surfaces and in the domain is determined using a pFFT Boundary Element Method (BEM) approach based on the Green’s Theorem Boundary Integral Equation. The vorticity trailing all lifting surfaces in the domain is represented using a Fast Multipole Tree, time advected, vortex participle method. Some simple steady state flow solutions are performed to demonstrate the basic capabilities of the solver. Although this paper focuses primarily on steady state solutions, it should be noted that this approach is designed to be a robust and efficient unsteady potential flow simulation tool, useful for rapid computational prototyping.