3 resultados para Intrinsic parameters
em Massachusetts Institute of Technology
Resumo:
We describe the key role played by partial evaluation in the Supercomputing Toolkit, a parallel computing system for scientific applications that effectively exploits the vast amount of parallelism exposed by partial evaluation. The Supercomputing Toolkit parallel processor and its associated partial evaluation-based compiler have been used extensively by scientists at MIT, and have made possible recent results in astrophysics showing that the motion of the planets in our solar system is chaotically unstable.
Resumo:
We enhance photographs shot in dark environments by combining a picture taken with the available light and one taken with the flash. We preserve the ambiance of the original lighting and insert the sharpness from the flash image. We use the bilateral filter to decompose the images into detail and large scale. We reconstruct the image using the large scale of the available lighting and the detail of the flash. We detect and correct flash shadows. This combines the advantages of available illumination and flash photography.
Resumo:
In this paper, a new methodology for predicting fluid free surface shape using Model Order Reduction (MOR) is presented. Proper Orthogonal Decomposition combined with a linear interpolation procedure for its coefficient is applied to a problem involving bubble dynamics near to a free surface. A model is developed to accurately and efficiently capture the variation of the free surface shape with different bubble parameters. In addition, a systematic approach is developed within the MOR framework to find the best initial locations and pressures for a set of bubbles beneath the quiescent free surface such that the resultant free surface attained is close to a desired shape. Predictions of the free surface in two-dimensions and three-dimensions are presented.