5 resultados para Interlanguage. Bilingualism. English as an additional language. Input
em Massachusetts Institute of Technology
Resumo:
The STUDENT problem solving system, programmed in LISP, accepts as input a comfortable but restricted subset of English which can express a wide variety of algebra story problems. STUDENT finds the solution to a large class of these problems. STUDENT can utilize a store of global information not specific to any one problem, and may make assumptions about the interpretation of ambiguities in the wording of the problem being solved. If it uses such information or makes any assumptions, STUDENT communicates this fact to the user. The thesis includes a summary of other English language questions-answering systems. All these systems, and STUDENT, are evaluated according to four standard criteria. The linguistic analysis in STUDENT is a first approximation to the analytic portion of a semantic theory of discourse outlined in the thesis. STUDENT finds the set of kernel sentences which are the base of the input discourse, and transforms this sequence of kernel sentences into a set of simultaneous equations which form the semantic base of the STUDENT system. STUDENT then tries to solve this set of equations for the values of requested unknowns. If it is successful it gives the answers in English. If not, STUDENT asks the user for more information, and indicates the nature of the desired information. The STUDENT system is a first step toward natural language communication with computers. Further work on the semantic theory proposed should result in much more sophisticated systems.
Resumo:
The primary goal of this report is to demonstrate how considerations from computational complexity theory can inform grammatical theorizing. To this end, generalized phrase structure grammar (GPSG) linguistic theory is revised so that its power more closely matches the limited ability of an ideal speaker--hearer: GPSG Recognition is EXP-POLY time hard, while Revised GPSG Recognition is NP-complete. A second goal is to provide a theoretical framework within which to better understand the wide range of existing GPSG models, embodied in formal definitions as well as in implemented computer programs. A grammar for English and an informal explanation of the GPSG/RGPSG syntactic features are included in appendices.
Resumo:
Dynamic systems which undergo rapid motion can excite natural frequencies that lead to residual vibration at the end of motion. This work presents a method to shape force profiles that reduce excitation energy at the natural frequencies in order to reduce residual vibration for fast moves. Such profiles are developed using a ramped sinusoid function and its harmonics, choosing coefficients to reduce spectral energy at the natural frequencies of the system. To improve robustness with respect to parameter uncertainty, spectral energy is reduced for a range of frequencies surrounding the nominal natural frequency. An additional set of versine profiles are also constructed to permit motion at constant speed for velocity-limited systems. These shaped force profiles are incorporated into a simple closed-loop system with position and velocity feedback. The force input is doubly integrated to generate a shaped position reference for the controller to follow. This control scheme is evaluated on the MIT Cartesian Robot. The shaped inputs generate motions with minimum residual vibration when actuator saturation is avoided. Feedback control compensates for the effect of friction Using only a knowledge of the natural frequencies of the system to shape the force inputs, vibration can also be attenuated in modes which vibrate in directions other than the motion direction. When moving several axes, the use of shaped inputs allows minimum residual vibration even when the natural frequencies are dynamically changing by a limited amount.
Resumo:
We have developed a compiler for the lexically-scoped dialect of LISP known as SCHEME. The compiler knows relatively little about specific data manipulation primitives such as arithmetic operators, but concentrates on general issues of environment and control. Rather than having specialized knowledge about a large variety of control and environment constructs, the compiler handles only a small basis set which reflects the semantics of lambda-calculus. All of the traditional imperative constructs, such as sequencing, assignment, looping, GOTO, as well as many standard LISP constructs such as AND, OR, and COND, are expressed in macros in terms of the applicative basis set. A small number of optimization techniques, coupled with the treatment of function calls as GOTO statements, serve to produce code as good as that produced by more traditional compilers. The macro approach enables speedy implementation of new constructs as desired without sacrificing efficiency in the generated code. A fair amount of analysis is devoted to determining whether environments may be stack-allocated or must be heap-allocated. Heap-allocated environments are necessary in general because SCHEME (unlike Algol 60 and Algol 68, for example) allows procedures with free lexically scoped variables to be returned as the values of other procedures; the Algol stack-allocation environment strategy does not suffice. The methods used here indicate that a heap-allocating generalization of the "display" technique leads to an efficient implementation of such "upward funargs". Moreover, compile-time optimization and analysis can eliminate many "funargs" entirely, and so far fewer environment structures need be allocated at run time than might be expected. A subset of SCHEME (rather than triples, for example) serves as the representation intermediate between the optimized SCHEME code and the final output code; code is expressed in this subset in the so-called continuation-passing style. As a subset of SCHEME, it enjoys the same theoretical properties; one could even apply the same optimizer used on the input code to the intermediate code. However, the subset is so chosen that all temporary quantities are made manifest as variables, and no control stack is needed to evaluate it. As a result, this apparently applicative representation admits an imperative interpretation which permits easy transcription to final imperative machine code. These qualities suggest that an applicative language like SCHEME is a better candidate for an UNCOL than the more imperative candidates proposed to date.
Resumo:
Free-word order languages have long posed significant problems for standard parsing algorithms. This thesis presents an implemented parser, based on Government-Binding (GB) theory, for a particular free-word order language, Warlpiri, an aboriginal language of central Australia. The words in a sentence of a free-word order language may swap about relatively freely with little effect on meaning: the permutations of a sentence mean essentially the same thing. It is assumed that this similarity in meaning is directly reflected in the syntax. The parser presented here properly processes free word order because it assigns the same syntactic structure to the permutations of a single sentence. The parser also handles fixed word order, as well as other phenomena. On the view presented here, there is no such thing as a "configurational" or "non-configurational" language. Rather, there is a spectrum of languages that are more or less ordered. The operation of this parsing system is quite different in character from that of more traditional rule-based parsing systems, e.g., context-free parsers. In this system, parsing is carried out via the construction of two different structures, one encoding precedence information and one encoding hierarchical information. This bipartite representation is the key to handling both free- and fixed-order phenomena. This thesis first presents an overview of the portion of Warlpiri that can be parsed. Following this is a description of the linguistic theory on which the parser is based. The chapter after that describes the representations and algorithms of the parser. In conclusion, the parser is compared to related work. The appendix contains a substantial list of test cases ??th grammatical and ungrammatical ??at the parser has actually processed.