5 resultados para Incomplete Markets
em Massachusetts Institute of Technology
Resumo:
An increasing number of parameter estimation tasks involve the use of at least two information sources, one complete but limited, the other abundant but incomplete. Standard algorithms such as EM (or em) used in this context are unfortunately not stable in the sense that they can lead to a dramatic loss of accuracy with the inclusion of incomplete observations. We provide a more controlled solution to this problem through differential equations that govern the evolution of locally optimal solutions (fixed points) as a function of the source weighting. This approach permits us to explicitly identify any critical (bifurcation) points leading to choices unsupported by the available complete data. The approach readily applies to any graphical model in O(n^3) time where n is the number of parameters. We use the naive Bayes model to illustrate these ideas and demonstrate the effectiveness of our approach in the context of text classification problems.
Resumo:
One very useful idea in AI research has been the notion of an explicit model of a problem situation. Procedural deduction languages, such as PLANNER, have been valuable tools for building these models. But PLANNER and its relatives are very limited in their ability to describe situations which are only partially specified. This thesis explores methods of increasing the ability of procedural deduction systems to deal with incomplete knowledge. The thesis examines in detail, problems involving negation, implication, disjunction, quantification, and equality. Control structure issues and the problem of modelling change under incomplete knowledge are also considered. Extensive comparisons are also made with systems for mechanica theorem proving.
Resumo:
Various studies of asset markets have shown that traders are capable of learning and transmitting information through prices in many situations. In this paper we replace human traders with intelligent software agents in a series of simulated markets. Using these simple learning agents, we are able to replicate several features of the experiments with human subjects, regarding (1) dissemination of information from informed to uninformed traders, and (2) aggregation of information spread over different traders.
Resumo:
Real-world learning tasks often involve high-dimensional data sets with complex patterns of missing features. In this paper we review the problem of learning from incomplete data from two statistical perspectives---the likelihood-based and the Bayesian. The goal is two-fold: to place current neural network approaches to missing data within a statistical framework, and to describe a set of algorithms, derived from the likelihood-based framework, that handle clustering, classification, and function approximation from incomplete data in a principled and efficient manner. These algorithms are based on mixture modeling and make two distinct appeals to the Expectation-Maximization (EM) principle (Dempster, Laird, and Rubin 1977)---both for the estimation of mixture components and for coping with the missing data.
Resumo:
Market prices are well known to efficiently collect and aggregate diverse information regarding the value of commodities and assets. The role of markets has been particularly suitable to pricing financial securities. This article provides an alternative application of the pricing mechanism to marketing research - using pseudo-securities markets to measure preferences over new product concepts. Surveys, focus groups, concept tests and conjoint studies are methods traditionally used to measure individual and aggregate preferences. Unfortunately, these methods can be biased, costly and time-consuming to conduct. The present research is motivated by the desire to efficiently measure preferences and more accurately predict new product success, based on the efficiency and incentive-compatibility of security trading markets. The article describes a novel market research method, pro-vides insight into why the method should work, and compares the results of several trading experiments against other methodologies such as concept testing and conjoint analysis.