5 resultados para Impulsive Differential Inclusion

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several algorithms for optical flow are studied theoretically and experimentally. Differential and matching methods are examined; these two methods have differing domains of application- differential methods are best when displacements in the image are small (<2 pixels) while matching methods work well for moderate displacements but do not handle sub-pixel motions. Both types of optical flow algorithm can use either local or global constraints, such as spatial smoothness. Local matching and differential techniques and global differential techniques will be examined. Most algorithms for optical flow utilize weak assumptions on the local variation of the flow and on the variation of image brightness. Strengthening these assumptions improves the flow computation. The computational consequence of this is a need for larger spatial and temporal support. Global differential approaches can be extended to local (patchwise) differential methods and local differential methods using higher derivatives. Using larger support is valid when constraint on the local shape of the flow are satisfied. We show that a simple constraint on the local shape of the optical flow, that there is slow spatial variation in the image plane, is often satisfied. We show how local differential methods imply the constraints for related methods using higher derivatives. Experiments show the behavior of these optical flow methods on velocity fields which so not obey the assumptions. Implementation of these methods highlights the importance of numerical differentiation. Numerical approximation of derivatives require care, in two respects: first, it is important that the temporal and spatial derivatives be matched, because of the significant scale differences in space and time, and, second, the derivative estimates improve with larger support.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project investigates the computational representation of differentiable manifolds, with the primary goal of solving partial differential equations using multiple coordinate systems on general n- dimensional spaces. In the process, this abstraction is used to perform accurate integrations of ordinary differential equations using multiple coordinate systems. In the case of linear partial differential equations, however, unexpected difficulties arise even with the simplest equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An increasing number of parameter estimation tasks involve the use of at least two information sources, one complete but limited, the other abundant but incomplete. Standard algorithms such as EM (or em) used in this context are unfortunately not stable in the sense that they can lead to a dramatic loss of accuracy with the inclusion of incomplete observations. We provide a more controlled solution to this problem through differential equations that govern the evolution of locally optimal solutions (fixed points) as a function of the source weighting. This approach permits us to explicitly identify any critical (bifurcation) points leading to choices unsupported by the available complete data. The approach readily applies to any graphical model in O(n^3) time where n is the number of parameters. We use the naive Bayes model to illustrate these ideas and demonstrate the effectiveness of our approach in the context of text classification problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How the visual system extracts shape information from a single grey-level image can be approached by examining how the information about shape is contained in the image. This technical report considers the characteristic equations derived by Horn as a dynamical system. Certain image critical points generate dynamical system critical points. The stable and unstable manifolds of these critical points correspond to convex and concave solution surfaces, giving more general existence and uniqueness results. A new kind of highly parallel, robust shape from shading algorithm is suggested on neighborhoods of these critical points. The information at bounding contours in the image is also analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explores automating the qualitative analysis of physical systems. It describes a program, called PLR, that takes parameterized ordinary differential equations as input and produces a qualitative description of the solutions for all initial values. PLR approximates intractable nonlinear systems with piecewise linear ones, analyzes the approximations, and draws conclusions about the original systems. It chooses approximations that are accurate enough to reproduce the essential properties of their nonlinear prototypes, yet simple enough to be analyzed completely and efficiently. It derives additional properties, such as boundedness or periodicity, by theoretical methods. I demonstrate PLR on several common nonlinear systems and on published examples from mechanical engineering.