1 resultado para Impostos-Recaptació-1652-Memorials
em Massachusetts Institute of Technology
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Aquatic Commons (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- B-Digital - Universidade Fernando Pessoa - Portugal (3)
- Biblioteca Digital da Câmara dos Deputados (52)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (21)
- Biblioteca Valenciana Digital - Ministerio de Educación, Cultura y Deporte - Valencia - Espanha (10)
- Bibloteca do Senado Federal do Brasil (261)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (2)
- Boston University Digital Common (2)
- Brock University, Canada (1)
- Cámara de Comercio de Bogotá, Colombia (1)
- Cambridge University Engineering Department Publications Database (4)
- CentAUR: Central Archive University of Reading - UK (16)
- Center for Jewish History Digital Collections (5)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (21)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (10)
- Digital Archives@Colby (2)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (5)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (66)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (17)
- Helda - Digital Repository of University of Helsinki (2)
- Hospital Prof. Dr. Fernando Fonseca - Portugal (1)
- Indian Institute of Science - Bangalore - Índia (3)
- Infoteca EMBRAPA (1)
- Instituto Politécnico do Porto, Portugal (21)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (25)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (7)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (11)
- Queensland University of Technology - ePrints Archive (15)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (2)
- RDBU - Repositório Digital da Biblioteca da Unisinos (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (7)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (8)
- Repositório Científico do Instituto Politécnico de Santarém - Portugal (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (156)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (5)
- Repositorio Institucional de la Universidad Nacional Agraria (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (8)
- SAPIENTIA - Universidade do Algarve - Portugal (6)
- School of Medicine, Washington University, United States (2)
- Universidad Autónoma de Nuevo León, Mexico (3)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (7)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (8)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (2)
- University of Michigan (148)
- WestminsterResearch - UK (1)
Resumo:
Chow and Liu introduced an algorithm for fitting a multivariate distribution with a tree (i.e. a density model that assumes that there are only pairwise dependencies between variables) and that the graph of these dependencies is a spanning tree. The original algorithm is quadratic in the dimesion of the domain, and linear in the number of data points that define the target distribution $P$. This paper shows that for sparse, discrete data, fitting a tree distribution can be done in time and memory that is jointly subquadratic in the number of variables and the size of the data set. The new algorithm, called the acCL algorithm, takes advantage of the sparsity of the data to accelerate the computation of pairwise marginals and the sorting of the resulting mutual informations, achieving speed ups of up to 2-3 orders of magnitude in the experiments.