4 resultados para Image of Mathematicians
em Massachusetts Institute of Technology
Resumo:
Visual object recognition requires the matching of an image with a set of models stored in memory. In this paper we propose an approach to recognition in which a 3-D object is represented by the linear combination of 2-D images of the object. If M = {M1,...Mk} is the set of pictures representing a given object, and P is the 2-D image of an object to be recognized, then P is considered an instance of M if P = Eki=aiMi for some constants ai. We show that this approach handles correctly rigid 3-D transformations of objects with sharp as well as smooth boundaries, and can also handle non-rigid transformations. The paper is divided into two parts. In the first part we show that the variety of views depicting the same object under different transformations can often be expressed as the linear combinations of a small number of views. In the second part we suggest how this linear combinatino property may be used in the recognition process.
Resumo:
The visual analysis of surface shape from texture and surface contour is treated within a computational framework. The aim of this study is to determine valid constraints that are sufficient to allow surface orientation and distance (up to a multiplicative constant) to be computed from the image of surface texture and of surface contours.
Resumo:
We describe a technique for finding pixelwise correspondences between two images by using models of objects of the same class to guide the search. The object models are 'learned' from example images (also called prototypes) of an object class. The models consist of a linear combination ofsprototypes. The flow fields giving pixelwise correspondences between a base prototype and each of the other prototypes must be given. A novel image of an object of the same class is matched to a model by minimizing an error between the novel image and the current guess for the closest modelsimage. Currently, the algorithm applies to line drawings of objects. An extension to real grey level images is discussed.
Resumo:
The capability of estimating the walking direction of people would be useful in many applications such as those involving autonomous cars and robots. We introduce an approach for estimating the walking direction of people from images, based on learning the correct classification of a still image by using SVMs. We find that the performance of the system can be improved by classifying each image of a walking sequence and combining the outputs of the classifier. Experiments were performed to evaluate our system and estimate the trade-off between number of images in walking sequences and performance.