1 resultado para Image formation theory
em Massachusetts Institute of Technology
Filtro por publicador
- Aberdeen University (2)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (5)
- Archive of European Integration (1)
- Aston University Research Archive (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (181)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (24)
- Brock University, Canada (7)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (22)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (8)
- Cochin University of Science & Technology (CUSAT), India (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (17)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (7)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (14)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (2)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- Glasgow Theses Service (2)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (39)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (6)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (5)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (4)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (70)
- Repositório da Produção Científica e Intelectual da Unicamp (26)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (9)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositorio Institucional de la Universidad de La Laguna (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (30)
- Repositorio Institucional Universidad de Medellín (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (23)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (2)
- Scielo Saúde Pública - SP (31)
- Universidad de Alicante (7)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (10)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (9)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (11)
- Université de Montréal (2)
- Université de Montréal, Canada (20)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (1)
- University of Michigan (20)
- University of Queensland eSpace - Australia (279)
- WestminsterResearch - UK (2)
Resumo:
In order to estimate the motion of an object, the visual system needs to combine multiple local measurements, each of which carries some degree of ambiguity. We present a model of motion perception whereby measurements from different image regions are combined according to a Bayesian estimator --- the estimated motion maximizes the posterior probability assuming a prior favoring slow and smooth velocities. In reviewing a large number of previously published phenomena we find that the Bayesian estimator predicts a wide range of psychophysical results. This suggests that the seemingly complex set of illusions arise from a single computational strategy that is optimal under reasonable assumptions.