2 resultados para Icons
em Massachusetts Institute of Technology
Resumo:
We describe a program called SketchIT capable of producing multiple families of designs from a single sketch. The program is given a rough sketch (drawn using line segments for part faces and icons for springs and kinematic joints) and a description of the desired behavior. The sketch is "rough" in the sense that taken literally, it may not work. From this single, perhaps flawed sketch and the behavior description, the program produces an entire family of working designs. The program also produces design variants, each of which is itself a family of designs. SketchIT represents each family of designs with a "behavior ensuring parametric model" (BEP-Model), a parametric model augmented with a set of constraints that ensure the geometry provides the desired behavior. The construction of the BEP-Model from the sketch and behavior description is the primary task and source of difficulty in this undertaking. SketchIT begins by abstracting the sketch to produce a qualitative configuration space (qc-space) which it then uses as its primary representation of behavior. SketchIT modifies this initial qc-space until qualitative simulation verifies that it produces the desired behavior. SketchIT's task is then to find geometries that implement this qc-space. It does this using a library of qc-space fragments. Each fragment is a piece of parametric geometry with a set of constraints that ensure the geometry implements a specific kind of boundary (qcs-curve) in qc-space. SketchIT assembles the fragments to produce the BEP-Model. SketchIT produces design variants by mapping the qc-space to multiple implementations, and by transforming rotating parts to translating parts and vice versa.
Resumo:
A prototype presentation system base is described. It offers mechanisms, tools, and ready-made parts for building user interfaces. A general user interface model underlies the base, organized around the concept of a presentation: a visible text or graphic for conveying information. Te base and model emphasize domain independence and style independence, to apply to the widest possible range of interfaces. The primitive presentation system model treats the interface as a system of processes maintaining a semantic relation between an application data base and a presentation data base, the symbolic screen description containing presentations. A presenter continually updates the presentation data base from the application data base. The user manipulates presentations with a presentation editor. A recognizer translates the user's presentation manipulation into application data base commands. The primitive presentation system can be extended to model more complex systems by attaching additional presentation systems. In order to illustrate the model's generality and descriptive capabilities, extended model structures for several existing user interfaces are discussed. The base provides support for building the application and presentation data bases, linked together into a single, uniform network, including descriptions of classes of objects as we as the objects themselves. The base provides an initial presentation data base network graphics to continually display it, and editing functions. A variety of tools and mechanisms help create and control presenters and recognizers. To demonstrate the base's utility, three interfaces to an operating system were constructed, embodying different styles: icons, menu, and graphical annotation.